{"title":"基于扩散图逼近增益的反馈粒子滤波器分析","authors":"S. Pathiraja, W. Stannat","doi":"10.3934/fods.2021023","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Control-type particle filters have been receiving increasing attention over the last decade as a means of obtaining sample based approximations to the sequential Bayesian filtering problem in the nonlinear setting. Here we analyse one such type, namely the feedback particle filter and a recently proposed approximation of the associated gain function based on diffusion maps. The key purpose is to provide analytic insights on the form of the approximate gain, which are of interest in their own right. These are then used to establish a roadmap to obtaining well-posedness and convergence of the finite <inline-formula><tex-math id=\"M1\">\\begin{document}$ N $\\end{document}</tex-math></inline-formula> system to its mean field limit. A number of possible future research directions are also discussed.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of the feedback particle filter with diffusion map based approximation of the gain\",\"authors\":\"S. Pathiraja, W. Stannat\",\"doi\":\"10.3934/fods.2021023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Control-type particle filters have been receiving increasing attention over the last decade as a means of obtaining sample based approximations to the sequential Bayesian filtering problem in the nonlinear setting. Here we analyse one such type, namely the feedback particle filter and a recently proposed approximation of the associated gain function based on diffusion maps. The key purpose is to provide analytic insights on the form of the approximate gain, which are of interest in their own right. These are then used to establish a roadmap to obtaining well-posedness and convergence of the finite <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ N $\\\\end{document}</tex-math></inline-formula> system to its mean field limit. A number of possible future research directions are also discussed.</p>\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2021023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2021023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
摘要
Control-type particle filters have been receiving increasing attention over the last decade as a means of obtaining sample based approximations to the sequential Bayesian filtering problem in the nonlinear setting. Here we analyse one such type, namely the feedback particle filter and a recently proposed approximation of the associated gain function based on diffusion maps. The key purpose is to provide analytic insights on the form of the approximate gain, which are of interest in their own right. These are then used to establish a roadmap to obtaining well-posedness and convergence of the finite \begin{document}$ N $\end{document} system to its mean field limit. A number of possible future research directions are also discussed.
Analysis of the feedback particle filter with diffusion map based approximation of the gain
Control-type particle filters have been receiving increasing attention over the last decade as a means of obtaining sample based approximations to the sequential Bayesian filtering problem in the nonlinear setting. Here we analyse one such type, namely the feedback particle filter and a recently proposed approximation of the associated gain function based on diffusion maps. The key purpose is to provide analytic insights on the form of the approximate gain, which are of interest in their own right. These are then used to establish a roadmap to obtaining well-posedness and convergence of the finite \begin{document}$ N $\end{document} system to its mean field limit. A number of possible future research directions are also discussed.