系统发育推断的复杂统计模型

Pub Date : 2022-10-29 DOI:10.1002/cjs.11741
Edward Susko
{"title":"系统发育推断的复杂统计模型","authors":"Edward Susko","doi":"10.1002/cjs.11741","DOIUrl":null,"url":null,"abstract":"<p>Molecular sequence data are a primary source of information about evolutionary relationships. Over the past few decades, there have been dramatic increases in the sizes of data available. Consequently, focus has shifted towards increasingly complex models that are less prone to the biases that are a consequence of model misspecification. At the same time, the computational challenges, which were always substantial, have become greater due to these increasingly complex models and larger data sizes. In this article, we review phylogenetic inference using sequence data and some recent advances in phylogenetic modelling. We discuss strategies for dealing with complex models, future challenges and paths forward.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11741","citationCount":"0","resultStr":"{\"title\":\"Complex statistical modelling for phylogenetic inference\",\"authors\":\"Edward Susko\",\"doi\":\"10.1002/cjs.11741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular sequence data are a primary source of information about evolutionary relationships. Over the past few decades, there have been dramatic increases in the sizes of data available. Consequently, focus has shifted towards increasingly complex models that are less prone to the biases that are a consequence of model misspecification. At the same time, the computational challenges, which were always substantial, have become greater due to these increasingly complex models and larger data sizes. In this article, we review phylogenetic inference using sequence data and some recent advances in phylogenetic modelling. We discuss strategies for dealing with complex models, future challenges and paths forward.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11741\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子序列数据是进化关系信息的主要来源。在过去的几十年里,可用的数据量急剧增加。因此,焦点已经转移到越来越复杂的模型上,这些模型不太容易产生由模型错误说明导致的偏差。与此同时,由于这些日益复杂的模型和更大的数据规模,计算挑战变得越来越大,这一直是实质性的。在这篇文章中,我们回顾了利用序列数据的系统发育推断和系统发育模型的一些最新进展。我们讨论了处理复杂模型的策略、未来的挑战和前进的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Complex statistical modelling for phylogenetic inference

Molecular sequence data are a primary source of information about evolutionary relationships. Over the past few decades, there have been dramatic increases in the sizes of data available. Consequently, focus has shifted towards increasingly complex models that are less prone to the biases that are a consequence of model misspecification. At the same time, the computational challenges, which were always substantial, have become greater due to these increasingly complex models and larger data sizes. In this article, we review phylogenetic inference using sequence data and some recent advances in phylogenetic modelling. We discuss strategies for dealing with complex models, future challenges and paths forward.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信