{"title":"算子理论中的条件正确定性","authors":"Zenon Jan Jablo'nski, I. Jung, J. Stochel","doi":"10.4064/dm846-1-2022","DOIUrl":null,"url":null,"abstract":"In this paper we extensively investigate the class of conditionally positive definite operators, namely operators generating conditionally positive definite sequences. This class itself contains subnormal operators, $2$- and $3$-isometries and much more beyond them. Quite a large part of the paper is devoted to the study of conditionally positive definite sequences of exponential growth with emphasis put on finding criteria for their positive definiteness, where both notions are understood in the semigroup sense. As a consequence, we obtain semispectral and dilation type representations for conditionally positive definite operators. We also show that the class of conditionally positive definite operators is closed under the operation of taking powers. On the basis of Agler's hereditary functional calculus, we build an $L^{\\infty}(M)$-functional calculus for operators of this class, where $M$ is an associated semispectral measure. We provide a variety of applications of this calculus to inequalities involving polynomials and analytic functions. In addition, we derive new necessary and sufficient conditions for a conditionally positive definite operator to be a subnormal contraction (including a telescopic one).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Conditional positive definiteness in operator theory\",\"authors\":\"Zenon Jan Jablo'nski, I. Jung, J. Stochel\",\"doi\":\"10.4064/dm846-1-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extensively investigate the class of conditionally positive definite operators, namely operators generating conditionally positive definite sequences. This class itself contains subnormal operators, $2$- and $3$-isometries and much more beyond them. Quite a large part of the paper is devoted to the study of conditionally positive definite sequences of exponential growth with emphasis put on finding criteria for their positive definiteness, where both notions are understood in the semigroup sense. As a consequence, we obtain semispectral and dilation type representations for conditionally positive definite operators. We also show that the class of conditionally positive definite operators is closed under the operation of taking powers. On the basis of Agler's hereditary functional calculus, we build an $L^{\\\\infty}(M)$-functional calculus for operators of this class, where $M$ is an associated semispectral measure. We provide a variety of applications of this calculus to inequalities involving polynomials and analytic functions. In addition, we derive new necessary and sufficient conditions for a conditionally positive definite operator to be a subnormal contraction (including a telescopic one).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm846-1-2022\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm846-1-2022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Conditional positive definiteness in operator theory
In this paper we extensively investigate the class of conditionally positive definite operators, namely operators generating conditionally positive definite sequences. This class itself contains subnormal operators, $2$- and $3$-isometries and much more beyond them. Quite a large part of the paper is devoted to the study of conditionally positive definite sequences of exponential growth with emphasis put on finding criteria for their positive definiteness, where both notions are understood in the semigroup sense. As a consequence, we obtain semispectral and dilation type representations for conditionally positive definite operators. We also show that the class of conditionally positive definite operators is closed under the operation of taking powers. On the basis of Agler's hereditary functional calculus, we build an $L^{\infty}(M)$-functional calculus for operators of this class, where $M$ is an associated semispectral measure. We provide a variety of applications of this calculus to inequalities involving polynomials and analytic functions. In addition, we derive new necessary and sufficient conditions for a conditionally positive definite operator to be a subnormal contraction (including a telescopic one).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.