{"title":"有界几何洛伦兹流形上量子化狄拉克场的哈达玛态","authors":"C. G'erard, Th'eo Stoskopf","doi":"10.1142/S0129055X22500088","DOIUrl":null,"url":null,"abstract":"We consider Dirac equations on even-dimensional Lorentzian manifolds of bounded geometry with a spin structure. For the associated free quantum field theory, we construct pure Hadamard states using global pseudodifferential calculus on a Cauchy surface. We also give two constructions of Hadamard states for Dirac fields for arbitrary spacetimes with a spin structure.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hadamard states for quantized Dirac fields on Lorentzian manifolds of bounded geometry\",\"authors\":\"C. G'erard, Th'eo Stoskopf\",\"doi\":\"10.1142/S0129055X22500088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Dirac equations on even-dimensional Lorentzian manifolds of bounded geometry with a spin structure. For the associated free quantum field theory, we construct pure Hadamard states using global pseudodifferential calculus on a Cauchy surface. We also give two constructions of Hadamard states for Dirac fields for arbitrary spacetimes with a spin structure.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129055X22500088\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X22500088","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Hadamard states for quantized Dirac fields on Lorentzian manifolds of bounded geometry
We consider Dirac equations on even-dimensional Lorentzian manifolds of bounded geometry with a spin structure. For the associated free quantum field theory, we construct pure Hadamard states using global pseudodifferential calculus on a Cauchy surface. We also give two constructions of Hadamard states for Dirac fields for arbitrary spacetimes with a spin structure.
期刊介绍:
Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.