{"title":"再次访问循环哈希","authors":"Filipe Araújo, Samuel Neves","doi":"10.1515/jmc-2018-0054","DOIUrl":null,"url":null,"abstract":"Abstract At ProvSec 2013, Minematsu presented the circulant hash, an almost-xor universal hash using only the xor and rotation operations. The circulant hash is a variant of Carter and Wegman’s H3 hash as well as Krawczyk’s Toeplitz hash, both of which are hashes based on matrix-vector multiplication over 𝔽2. In this paper we revisit the circulant hash and reinterpret it as a multiplication in the polynomial ring 𝔽2[x]/(xn + 1). This leads to simpler proofs, faster implementations in modern computer chips, and newer variants with practical implementation advantages.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"15 1","pages":"250 - 257"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2018-0054","citationCount":"0","resultStr":"{\"title\":\"The circulant hash revisited\",\"authors\":\"Filipe Araújo, Samuel Neves\",\"doi\":\"10.1515/jmc-2018-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract At ProvSec 2013, Minematsu presented the circulant hash, an almost-xor universal hash using only the xor and rotation operations. The circulant hash is a variant of Carter and Wegman’s H3 hash as well as Krawczyk’s Toeplitz hash, both of which are hashes based on matrix-vector multiplication over 𝔽2. In this paper we revisit the circulant hash and reinterpret it as a multiplication in the polynomial ring 𝔽2[x]/(xn + 1). This leads to simpler proofs, faster implementations in modern computer chips, and newer variants with practical implementation advantages.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"15 1\",\"pages\":\"250 - 257\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2018-0054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2018-0054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2018-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract At ProvSec 2013, Minematsu presented the circulant hash, an almost-xor universal hash using only the xor and rotation operations. The circulant hash is a variant of Carter and Wegman’s H3 hash as well as Krawczyk’s Toeplitz hash, both of which are hashes based on matrix-vector multiplication over 𝔽2. In this paper we revisit the circulant hash and reinterpret it as a multiplication in the polynomial ring 𝔽2[x]/(xn + 1). This leads to simpler proofs, faster implementations in modern computer chips, and newer variants with practical implementation advantages.