多孔介质中的线性输运

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
K. Amagai, Yuko Hatano, M. Machida
{"title":"多孔介质中的线性输运","authors":"K. Amagai, Yuko Hatano, M. Machida","doi":"10.1080/23324309.2020.1842453","DOIUrl":null,"url":null,"abstract":"Abstract The linear transport theory is developed to describe the time dependence of the number density of tracer particles in porous media. The advection is taken into account. The transport equation is numerically solved by the analytical discrete ordinates method. For the inverse Laplace transform, the double-exponential formula is employed. In this paper, we consider the travel distance of tracer particles whereas the half-space geometry was assumed in our previous paper [Amagai et al. (2020). Trans. Porous Media 132:311–331].","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"50 1","pages":"377 - 389"},"PeriodicalIF":0.7000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2020.1842453","citationCount":"0","resultStr":"{\"title\":\"Linear Transport in Porous Media\",\"authors\":\"K. Amagai, Yuko Hatano, M. Machida\",\"doi\":\"10.1080/23324309.2020.1842453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The linear transport theory is developed to describe the time dependence of the number density of tracer particles in porous media. The advection is taken into account. The transport equation is numerically solved by the analytical discrete ordinates method. For the inverse Laplace transform, the double-exponential formula is employed. In this paper, we consider the travel distance of tracer particles whereas the half-space geometry was assumed in our previous paper [Amagai et al. (2020). Trans. Porous Media 132:311–331].\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"50 1\",\"pages\":\"377 - 389\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23324309.2020.1842453\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2020.1842453\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2020.1842453","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要建立了线性输运理论来描述多孔介质中示踪粒子数密度随时间的变化规律。平流被考虑在内。用解析离散坐标法对输运方程进行了数值求解。对于拉普拉斯逆变换,采用双指数公式。在本文中,我们考虑了示踪粒子的行进距离,而在我们之前的论文[Amagai et al.(2020)]中假设了半空间几何。反式。多孔介质[j]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Transport in Porous Media
Abstract The linear transport theory is developed to describe the time dependence of the number density of tracer particles in porous media. The advection is taken into account. The transport equation is numerically solved by the analytical discrete ordinates method. For the inverse Laplace transform, the double-exponential formula is employed. In this paper, we consider the travel distance of tracer particles whereas the half-space geometry was assumed in our previous paper [Amagai et al. (2020). Trans. Porous Media 132:311–331].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信