Susanne Bremer-Hoffmann, Blanka Halamoda-Kenzaoui, Sven Even Borgos
{"title":"确定纳米药物的监管需求","authors":"Susanne Bremer-Hoffmann, Blanka Halamoda-Kenzaoui, Sven Even Borgos","doi":"10.1002/jin2.34","DOIUrl":null,"url":null,"abstract":"<p>The application of nanotechnology in health care is widely accepted as a potential driver of biomedical innovation. By exploiting their unique physicochemical properties, nanomedicines can monitor, repair, and control biological systems in order to address diseases for which currently no or only insufficient diagnostic and therapeutic tools are available. Nevertheless, the opportunities of nanotechnologies in the health sector are accompanied by challenges in the regulation of these products. Sufficient knowledge on their quality, safety, and efficacy must be gained and standardised methods must be made available to support the regulatory decision making and allow a smooth translation towards clinical applications. We have conducted a survey among regulatory authorities with the aim to obtain a general overview on the status and regulatory needs of nanomedicines and to indicate some trends on future requirements. The outcome has demonstrated strong regional differences in the regulation of nanomedicines and confirmed the need for the harmonisation of information requirements on nano-specific properties. In addition, a number of critical physicochemical properties that have already been proposed in the scientific literature were verified in the survey as relevant for regulatory decision making. Finally, the survey has demonstrated an interest of regulatory agencies in an independent nanomedicine characterisation facility that can support regulators in the evaluation of these systems and at the same time assess the performance of existing and new test methods for their application to the field of nanomedicine.</p>","PeriodicalId":91547,"journal":{"name":"Journal of interdisciplinary nanomedicine","volume":"3 1","pages":"4-15"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jin2.34","citationCount":"52","resultStr":"{\"title\":\"Identification of regulatory needs for nanomedicines\",\"authors\":\"Susanne Bremer-Hoffmann, Blanka Halamoda-Kenzaoui, Sven Even Borgos\",\"doi\":\"10.1002/jin2.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The application of nanotechnology in health care is widely accepted as a potential driver of biomedical innovation. By exploiting their unique physicochemical properties, nanomedicines can monitor, repair, and control biological systems in order to address diseases for which currently no or only insufficient diagnostic and therapeutic tools are available. Nevertheless, the opportunities of nanotechnologies in the health sector are accompanied by challenges in the regulation of these products. Sufficient knowledge on their quality, safety, and efficacy must be gained and standardised methods must be made available to support the regulatory decision making and allow a smooth translation towards clinical applications. We have conducted a survey among regulatory authorities with the aim to obtain a general overview on the status and regulatory needs of nanomedicines and to indicate some trends on future requirements. The outcome has demonstrated strong regional differences in the regulation of nanomedicines and confirmed the need for the harmonisation of information requirements on nano-specific properties. In addition, a number of critical physicochemical properties that have already been proposed in the scientific literature were verified in the survey as relevant for regulatory decision making. Finally, the survey has demonstrated an interest of regulatory agencies in an independent nanomedicine characterisation facility that can support regulators in the evaluation of these systems and at the same time assess the performance of existing and new test methods for their application to the field of nanomedicine.</p>\",\"PeriodicalId\":91547,\"journal\":{\"name\":\"Journal of interdisciplinary nanomedicine\",\"volume\":\"3 1\",\"pages\":\"4-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/jin2.34\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interdisciplinary nanomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jin2.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interdisciplinary nanomedicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jin2.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of regulatory needs for nanomedicines
The application of nanotechnology in health care is widely accepted as a potential driver of biomedical innovation. By exploiting their unique physicochemical properties, nanomedicines can monitor, repair, and control biological systems in order to address diseases for which currently no or only insufficient diagnostic and therapeutic tools are available. Nevertheless, the opportunities of nanotechnologies in the health sector are accompanied by challenges in the regulation of these products. Sufficient knowledge on their quality, safety, and efficacy must be gained and standardised methods must be made available to support the regulatory decision making and allow a smooth translation towards clinical applications. We have conducted a survey among regulatory authorities with the aim to obtain a general overview on the status and regulatory needs of nanomedicines and to indicate some trends on future requirements. The outcome has demonstrated strong regional differences in the regulation of nanomedicines and confirmed the need for the harmonisation of information requirements on nano-specific properties. In addition, a number of critical physicochemical properties that have already been proposed in the scientific literature were verified in the survey as relevant for regulatory decision making. Finally, the survey has demonstrated an interest of regulatory agencies in an independent nanomedicine characterisation facility that can support regulators in the evaluation of these systems and at the same time assess the performance of existing and new test methods for their application to the field of nanomedicine.