Xenakis随机合成的物理启发实现:扩散动态随机合成

IF 0.4 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Emilio L. Rojas;Rodrigo F. Cádiz
{"title":"Xenakis随机合成的物理启发实现:扩散动态随机合成","authors":"Emilio L. Rojas;Rodrigo F. Cádiz","doi":"10.1162/comj_a_00606","DOIUrl":null,"url":null,"abstract":"Abstract This article presents an extension of Iannis Xenakis's Dynamic Stochastic Synthesis (DSS) called Diffusion Dynamic Stochastic Synthesis (DDSS). This extension solves a diffusion equation whose solutions can be used to map particle positions to amplitude values of several breakpoints in a waveform, following traditional concepts of DSS by directly shaping the waveform of a sound. One significant difference between DSS and DDSS is that the latter includes a drift in the Brownian trajectories that each breakpoint experiences through time. Diffusion Dynamic Stochastic Synthesis can also be used in other ways, such as to control the amplitude values of an oscillator bank using additive synthesis, shaping in this case the spectrum, not the waveform. This second modality goes against Xenakis's original desire to depart from classical Fourier synthesis. The results of spectral analyses of the DDSS waveform approach, implemented using the software environment Max, are discussed and compared with the results of a simplified version of DSS to which, despite the similarity in the overall form of the frequency spectrum, noticeable differences are found. In addition to the Max implementation of the basic DDSS algorithm, a MIDI-controlled synthesizer is also presented here. With DDSS we introduce a real physical process, in this case diffusion, into traditional stochastic synthesis. This sort of sonification can suggest models of sound synthesis that are more complex and grounded in physical concepts.","PeriodicalId":50639,"journal":{"name":"Computer Music Journal","volume":"45 2","pages":"48-66"},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Physically Inspired Implementation of Xenakis's Stochastic Synthesis: Diffusion Dynamic Stochastic Synthesis\",\"authors\":\"Emilio L. Rojas;Rodrigo F. Cádiz\",\"doi\":\"10.1162/comj_a_00606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents an extension of Iannis Xenakis's Dynamic Stochastic Synthesis (DSS) called Diffusion Dynamic Stochastic Synthesis (DDSS). This extension solves a diffusion equation whose solutions can be used to map particle positions to amplitude values of several breakpoints in a waveform, following traditional concepts of DSS by directly shaping the waveform of a sound. One significant difference between DSS and DDSS is that the latter includes a drift in the Brownian trajectories that each breakpoint experiences through time. Diffusion Dynamic Stochastic Synthesis can also be used in other ways, such as to control the amplitude values of an oscillator bank using additive synthesis, shaping in this case the spectrum, not the waveform. This second modality goes against Xenakis's original desire to depart from classical Fourier synthesis. The results of spectral analyses of the DDSS waveform approach, implemented using the software environment Max, are discussed and compared with the results of a simplified version of DSS to which, despite the similarity in the overall form of the frequency spectrum, noticeable differences are found. In addition to the Max implementation of the basic DDSS algorithm, a MIDI-controlled synthesizer is also presented here. With DDSS we introduce a real physical process, in this case diffusion, into traditional stochastic synthesis. This sort of sonification can suggest models of sound synthesis that are more complex and grounded in physical concepts.\",\"PeriodicalId\":50639,\"journal\":{\"name\":\"Computer Music Journal\",\"volume\":\"45 2\",\"pages\":\"48-66\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Music Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9931004/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Music Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9931004/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了Iannis Xenakis动态随机综合(DSS)的一个扩展,称为扩散动态随机综合。该扩展解决了一个扩散方程,其解可用于将粒子位置映射到波形中几个断点的振幅值,遵循DSS的传统概念,直接对声音的波形进行整形。DSS和DDSS之间的一个显著区别是,后者包括每个断点在时间上经历的布朗轨迹的漂移。扩散动态随机合成也可以以其他方式使用,例如使用加法合成来控制振荡器组的振幅值,在这种情况下成形频谱,而不是波形。第二种模态违背了Xenakis最初想要脱离经典傅立叶合成的愿望。讨论了使用软件环境Max实现的DDSS波形方法的频谱分析结果,并将其与DSS的简化版本的结果进行了比较,尽管频谱的总体形式相似,但发现了明显的差异。除了基本DDSS算法的Max实现外,本文还介绍了一种MIDI控制合成器。通过DDSS,我们将一个真实的物理过程,在这种情况下是扩散,引入到传统的随机综合中。这种声音处理可以提出更复杂的声音合成模型,并以物理概念为基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Physically Inspired Implementation of Xenakis's Stochastic Synthesis: Diffusion Dynamic Stochastic Synthesis
Abstract This article presents an extension of Iannis Xenakis's Dynamic Stochastic Synthesis (DSS) called Diffusion Dynamic Stochastic Synthesis (DDSS). This extension solves a diffusion equation whose solutions can be used to map particle positions to amplitude values of several breakpoints in a waveform, following traditional concepts of DSS by directly shaping the waveform of a sound. One significant difference between DSS and DDSS is that the latter includes a drift in the Brownian trajectories that each breakpoint experiences through time. Diffusion Dynamic Stochastic Synthesis can also be used in other ways, such as to control the amplitude values of an oscillator bank using additive synthesis, shaping in this case the spectrum, not the waveform. This second modality goes against Xenakis's original desire to depart from classical Fourier synthesis. The results of spectral analyses of the DDSS waveform approach, implemented using the software environment Max, are discussed and compared with the results of a simplified version of DSS to which, despite the similarity in the overall form of the frequency spectrum, noticeable differences are found. In addition to the Max implementation of the basic DDSS algorithm, a MIDI-controlled synthesizer is also presented here. With DDSS we introduce a real physical process, in this case diffusion, into traditional stochastic synthesis. This sort of sonification can suggest models of sound synthesis that are more complex and grounded in physical concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Music Journal
Computer Music Journal 工程技术-计算机:跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: Computer Music Journal is published quarterly with an annual sound and video anthology containing curated music¹. For four decades, it has been the leading publication about computer music, concentrating fully on digital sound technology and all musical applications of computers. This makes it an essential resource for musicians, composers, scientists, engineers, computer enthusiasts, and anyone exploring the wonders of computer-generated sound. Edited by experts in the field and featuring an international advisory board of eminent computer musicians, issues typically include: In-depth articles on cutting-edge research and developments in technology, methods, and aesthetics of computer music Reports on products of interest, such as new audio and MIDI software and hardware Interviews with leading composers of computer music Announcements of and reports on conferences and courses in the United States and abroad Publication, event, and recording reviews Tutorials, letters, and editorials Numerous graphics, photographs, scores, algorithms, and other illustrations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信