结合13c‐NMR三重序列数据与联合分子量和组成数据来估计气相聚乙烯反应器模型的参数

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Jakob I. Straznicky, Jennifer P. Aiello, Lauren A. Gibson, Yan Jiang, Timothy Boller, Hsu Chiang, Kimberley B. McAuley
{"title":"结合13c‐NMR三重序列数据与联合分子量和组成数据来估计气相聚乙烯反应器模型的参数","authors":"Jakob I. Straznicky,&nbsp;Jennifer P. Aiello,&nbsp;Lauren A. Gibson,&nbsp;Yan Jiang,&nbsp;Timothy Boller,&nbsp;Hsu Chiang,&nbsp;Kimberley B. McAuley","doi":"10.1002/mats.202200073","DOIUrl":null,"url":null,"abstract":"<p>A three-site metallocene catalyst is used in a gas-phase semi-batch reactor to produce ethylene/hexene copolymers. At the end of each batch, polyethylene (PE) is collected and analyzed to determine the carbon-13 nuclear magnetic resonance (<sup>13</sup>C-NMR) triad sequence distribution. Joint molecular weight (MW) and composition distribution data are obtained using gel permeation chromatography with an infrared detector (GPC-IR). Data from ten experimental runs are used for kinetic parameter estimation. Using a mean-squared error (MSE) selection methodology, 23 of the 36 model parameters are selected for estimation using the available polymerization rate and PE characterization data. The remaining parameters are held at initial guesses to avoid overfitting. Addition of the triad data to the parameter estimation problem allows for one additional parameter to be estimated and results in improved parameter estimates. Standard deviations of all but one of the estimated parameters decreased due to inclusion of triad data. The updated parameter estimates result in good fits for the triad data and for joint MW and composition data. The model accurately predicts four validation data sets not used for parameter estimation. The new model and its updated parameter estimates will be valuable for scaling up new polymer grades from laboratory-scale to commercial-scale.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining 13C-NMR Triad Sequence Data with Joint Molecular Weight and Composition Data to Estimate Parameters in a Gas-Phase Polyethylene Reactor Model\",\"authors\":\"Jakob I. Straznicky,&nbsp;Jennifer P. Aiello,&nbsp;Lauren A. Gibson,&nbsp;Yan Jiang,&nbsp;Timothy Boller,&nbsp;Hsu Chiang,&nbsp;Kimberley B. McAuley\",\"doi\":\"10.1002/mats.202200073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A three-site metallocene catalyst is used in a gas-phase semi-batch reactor to produce ethylene/hexene copolymers. At the end of each batch, polyethylene (PE) is collected and analyzed to determine the carbon-13 nuclear magnetic resonance (<sup>13</sup>C-NMR) triad sequence distribution. Joint molecular weight (MW) and composition distribution data are obtained using gel permeation chromatography with an infrared detector (GPC-IR). Data from ten experimental runs are used for kinetic parameter estimation. Using a mean-squared error (MSE) selection methodology, 23 of the 36 model parameters are selected for estimation using the available polymerization rate and PE characterization data. The remaining parameters are held at initial guesses to avoid overfitting. Addition of the triad data to the parameter estimation problem allows for one additional parameter to be estimated and results in improved parameter estimates. Standard deviations of all but one of the estimated parameters decreased due to inclusion of triad data. The updated parameter estimates result in good fits for the triad data and for joint MW and composition data. The model accurately predicts four validation data sets not used for parameter estimation. The new model and its updated parameter estimates will be valuable for scaling up new polymer grades from laboratory-scale to commercial-scale.</p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200073\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在气相半间歇反应器中采用三位点茂金属催化剂制备乙烯/己烯共聚物。在每个批次结束时,收集并分析聚乙烯(PE)以确定碳-13核磁共振(13C-NMR)三联体序列分布。用红外凝胶渗透色谱法(GPC-IR)获得了关节分子量(MW)和成分分布数据。从十个实验运行的数据被用于动力学参数估计。使用均方误差(MSE)选择方法,从36个模型参数中选择23个进行估计,使用可用的聚合速率和PE表征数据。其余参数保持在初始猜测,以避免过拟合。将三元数据添加到参数估计问题中,可以估计一个额外的参数,从而改进参数估计。除一个估计参数外,所有估计参数的标准差均因纳入三元数据而减小。更新的参数估计结果很好地拟合了三元组数据和联合MW和成分数据。该模型准确预测了未用于参数估计的4个验证数据集。新模型及其更新的参数估计对于将新聚合物等级从实验室规模扩大到商业规模将有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combining 13C-NMR Triad Sequence Data with Joint Molecular Weight and Composition Data to Estimate Parameters in a Gas-Phase Polyethylene Reactor Model

Combining 13C-NMR Triad Sequence Data with Joint Molecular Weight and Composition Data to Estimate Parameters in a Gas-Phase Polyethylene Reactor Model

A three-site metallocene catalyst is used in a gas-phase semi-batch reactor to produce ethylene/hexene copolymers. At the end of each batch, polyethylene (PE) is collected and analyzed to determine the carbon-13 nuclear magnetic resonance (13C-NMR) triad sequence distribution. Joint molecular weight (MW) and composition distribution data are obtained using gel permeation chromatography with an infrared detector (GPC-IR). Data from ten experimental runs are used for kinetic parameter estimation. Using a mean-squared error (MSE) selection methodology, 23 of the 36 model parameters are selected for estimation using the available polymerization rate and PE characterization data. The remaining parameters are held at initial guesses to avoid overfitting. Addition of the triad data to the parameter estimation problem allows for one additional parameter to be estimated and results in improved parameter estimates. Standard deviations of all but one of the estimated parameters decreased due to inclusion of triad data. The updated parameter estimates result in good fits for the triad data and for joint MW and composition data. The model accurately predicts four validation data sets not used for parameter estimation. The new model and its updated parameter estimates will be valuable for scaling up new polymer grades from laboratory-scale to commercial-scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信