F. Schott, D. Chamoret, T. Baron, Sébastien Salmon, Y. Meyer
{"title":"测试元启发式优化算法的性能度量和工具","authors":"F. Schott, D. Chamoret, T. Baron, Sébastien Salmon, Y. Meyer","doi":"10.22055/JACM.2021.37664.3060","DOIUrl":null,"url":null,"abstract":"In the last decade, many new algorithms have been proposed to solve optimization problems. Most of them are meta-heuristic algorithms. The issue of accurate performance measure of algorithms is still under discussion in the scientific community. Therefore, a new scoring strategy via a new benchmark is proposed. The idea of this new tool is to determine a score, a measure of efficiency taking into account both the end value of the optimization and the convergence speed. This measure is based on an aggregate of statistical results of different optimization problems. These problems are judiciously chosen to cover as broad a spectrum of resolution configurations as possible. They are defined by combinations of several parameters: dimensions, objective functions and evaluation limit on dimension ratios. Aggregation methods are chosen and set in order to make the problem weight relevant according to the computed score. This scoring strategy is compared to the CEC one thanks to the results of different algorithms: PSO, CMAES, Genetic Algorithm, Cuttlefish and simulated annealing.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"7 1","pages":"1803-1813"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance measure and tool for benchmarking metaheuristic optimization algorithms\",\"authors\":\"F. Schott, D. Chamoret, T. Baron, Sébastien Salmon, Y. Meyer\",\"doi\":\"10.22055/JACM.2021.37664.3060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, many new algorithms have been proposed to solve optimization problems. Most of them are meta-heuristic algorithms. The issue of accurate performance measure of algorithms is still under discussion in the scientific community. Therefore, a new scoring strategy via a new benchmark is proposed. The idea of this new tool is to determine a score, a measure of efficiency taking into account both the end value of the optimization and the convergence speed. This measure is based on an aggregate of statistical results of different optimization problems. These problems are judiciously chosen to cover as broad a spectrum of resolution configurations as possible. They are defined by combinations of several parameters: dimensions, objective functions and evaluation limit on dimension ratios. Aggregation methods are chosen and set in order to make the problem weight relevant according to the computed score. This scoring strategy is compared to the CEC one thanks to the results of different algorithms: PSO, CMAES, Genetic Algorithm, Cuttlefish and simulated annealing.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\"7 1\",\"pages\":\"1803-1813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22055/JACM.2021.37664.3060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.37664.3060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
Performance measure and tool for benchmarking metaheuristic optimization algorithms
In the last decade, many new algorithms have been proposed to solve optimization problems. Most of them are meta-heuristic algorithms. The issue of accurate performance measure of algorithms is still under discussion in the scientific community. Therefore, a new scoring strategy via a new benchmark is proposed. The idea of this new tool is to determine a score, a measure of efficiency taking into account both the end value of the optimization and the convergence speed. This measure is based on an aggregate of statistical results of different optimization problems. These problems are judiciously chosen to cover as broad a spectrum of resolution configurations as possible. They are defined by combinations of several parameters: dimensions, objective functions and evaluation limit on dimension ratios. Aggregation methods are chosen and set in order to make the problem weight relevant according to the computed score. This scoring strategy is compared to the CEC one thanks to the results of different algorithms: PSO, CMAES, Genetic Algorithm, Cuttlefish and simulated annealing.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.