{"title":"L-凸多元醇:离散层析成像方面","authors":"K. Tawbe, S. Mansour","doi":"10.4236/OJDM.2018.84009","DOIUrl":null,"url":null,"abstract":"This paper uses the geometrical properties of L-convex polyominoes in order to reconstruct these polyominoes. The main idea is to modify some clauses to the original construction of Chrobak and Durr in order to control the L-convexity using 2SAT satisfaction problem.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"08 1","pages":"116-136"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L -Convex Polyominoes: Discrete Tomographical Aspects\",\"authors\":\"K. Tawbe, S. Mansour\",\"doi\":\"10.4236/OJDM.2018.84009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses the geometrical properties of L-convex polyominoes in order to reconstruct these polyominoes. The main idea is to modify some clauses to the original construction of Chrobak and Durr in order to control the L-convexity using 2SAT satisfaction problem.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"08 1\",\"pages\":\"116-136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2018.84009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2018.84009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
L -Convex Polyominoes: Discrete Tomographical Aspects
This paper uses the geometrical properties of L-convex polyominoes in order to reconstruct these polyominoes. The main idea is to modify some clauses to the original construction of Chrobak and Durr in order to control the L-convexity using 2SAT satisfaction problem.