PEM燃料电池的氧过剩率控制:分数阶建模和分数滤波器IMC-PID控制

IF 1 Q4 ENGINEERING, CHEMICAL
M. Siva, Sampath Kumar Puttapati, Ramya Araga, Shubhanshu Sharma, D. Patle, G. Uday Bhaskar Babu
{"title":"PEM燃料电池的氧过剩率控制:分数阶建模和分数滤波器IMC-PID控制","authors":"M. Siva, Sampath Kumar Puttapati, Ramya Araga, Shubhanshu Sharma, D. Patle, G. Uday Bhaskar Babu","doi":"10.1515/cppm-2022-0050","DOIUrl":null,"url":null,"abstract":"Abstract Concerning global warming, an energy-efficient power source must produce low or no pollutant emissions and provide an unlimited fuel supply. Proton Exchange Membrane fuel cell (PEMFC) is an electrochemical device that transforms chemical energy into electrical energy. The performance and durability of PEM fuel cells are affected by voltage reversals and fuel starvation. Oxygen Excess Ratio (OER) is a crucial factor in controlling the fuel starvation of the PEMFC system. First, this work identified the PEMFC as an integer order and fractional-order first order plus time delay models using the predictor error method and Grunwald–Letnikov simulation method based on a trust-region-reflect algorithm, respectively. Fractional order models more accurately represented the PEM fuel cell system dynamics. Then, robust fractional filters cascaded with PID controllers based on the Internal Model Control scheme (IMC) are designed for identified integer and fractional order models to regulate the OER by compressor voltage manipulation. The genetic Algorithm (GA) optimization technique is used to find the optimal fractional filter tuning parameters. The proposed controller’s performance regarding Integral Absolute Error (IAE) and Total Variance (TV) is analyzed. Furthermore, the robustness of a perturbed plant and fragility with perturbed controllers are elucidated. The results show that a fractional filter cascaded with fractional order PID controller improves the performance compared to a fractional filter cascaded with integer order PID controllers.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen excess ratio control of PEM fuel cell: fractional order modeling and fractional filter IMC-PID control\",\"authors\":\"M. Siva, Sampath Kumar Puttapati, Ramya Araga, Shubhanshu Sharma, D. Patle, G. Uday Bhaskar Babu\",\"doi\":\"10.1515/cppm-2022-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Concerning global warming, an energy-efficient power source must produce low or no pollutant emissions and provide an unlimited fuel supply. Proton Exchange Membrane fuel cell (PEMFC) is an electrochemical device that transforms chemical energy into electrical energy. The performance and durability of PEM fuel cells are affected by voltage reversals and fuel starvation. Oxygen Excess Ratio (OER) is a crucial factor in controlling the fuel starvation of the PEMFC system. First, this work identified the PEMFC as an integer order and fractional-order first order plus time delay models using the predictor error method and Grunwald–Letnikov simulation method based on a trust-region-reflect algorithm, respectively. Fractional order models more accurately represented the PEM fuel cell system dynamics. Then, robust fractional filters cascaded with PID controllers based on the Internal Model Control scheme (IMC) are designed for identified integer and fractional order models to regulate the OER by compressor voltage manipulation. The genetic Algorithm (GA) optimization technique is used to find the optimal fractional filter tuning parameters. The proposed controller’s performance regarding Integral Absolute Error (IAE) and Total Variance (TV) is analyzed. Furthermore, the robustness of a perturbed plant and fragility with perturbed controllers are elucidated. The results show that a fractional filter cascaded with fractional order PID controller improves the performance compared to a fractional filter cascaded with integer order PID controllers.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2022-0050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对全球变暖问题,节能电源必须产生低排放或不排放污染物,并提供无限量的燃料供应。质子交换膜燃料电池(PEMFC)是一种将化学能转化为电能的电化学装置。PEM燃料电池的性能和耐久性受到电压反转和燃料短缺的影响。氧过剩比(OER)是控制PEMFC系统燃料短缺的关键因素。首先,本文利用预测误差法和基于信任区域反射算法的Grunwald-Letnikov模拟方法分别将PEMFC识别为整数阶和分数阶一阶加时滞模型。分数阶模型更准确地表示PEM燃料电池系统动力学。然后,针对已识别的整数阶和分数阶模型,设计了基于内模控制方案(IMC)的鲁棒分数阶滤波器与PID控制器级联,通过控制压缩机电压来调节OER。采用遗传算法(GA)优化技术寻找分数阶滤波器的最优调谐参数。分析了该控制器在积分绝对误差(IAE)和总方差(TV)下的性能。进一步研究了扰动对象的鲁棒性和带有扰动控制器的脆弱性。结果表明,与分数阶PID控制器级联的分数阶滤波器相比,分数阶PID控制器级联的分数阶滤波器性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxygen excess ratio control of PEM fuel cell: fractional order modeling and fractional filter IMC-PID control
Abstract Concerning global warming, an energy-efficient power source must produce low or no pollutant emissions and provide an unlimited fuel supply. Proton Exchange Membrane fuel cell (PEMFC) is an electrochemical device that transforms chemical energy into electrical energy. The performance and durability of PEM fuel cells are affected by voltage reversals and fuel starvation. Oxygen Excess Ratio (OER) is a crucial factor in controlling the fuel starvation of the PEMFC system. First, this work identified the PEMFC as an integer order and fractional-order first order plus time delay models using the predictor error method and Grunwald–Letnikov simulation method based on a trust-region-reflect algorithm, respectively. Fractional order models more accurately represented the PEM fuel cell system dynamics. Then, robust fractional filters cascaded with PID controllers based on the Internal Model Control scheme (IMC) are designed for identified integer and fractional order models to regulate the OER by compressor voltage manipulation. The genetic Algorithm (GA) optimization technique is used to find the optimal fractional filter tuning parameters. The proposed controller’s performance regarding Integral Absolute Error (IAE) and Total Variance (TV) is analyzed. Furthermore, the robustness of a perturbed plant and fragility with perturbed controllers are elucidated. The results show that a fractional filter cascaded with fractional order PID controller improves the performance compared to a fractional filter cascaded with integer order PID controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信