{"title":"平动线的庞加莱-本迪克逊定理及其在素数端的应用","authors":"Andres Koropecki, A. Passeggi","doi":"10.4171/CMH/457","DOIUrl":null,"url":null,"abstract":"For an orientation-preserving homeomorphism of the sphere, we prove that if a translation line does not accumulate in a fixed point, then it necessarily spirals towards a topological attractor. This is in analogy with the description of flow lines given by Poincare-Bendixson theorem. We then apply this result to the study of invariant continua without fixed points, in particular to circloids and boundaries of simply connected open sets. Among the applications, we show that if the prime ends rotation number of such an open set $U$ vanishes, then either there is a fixed point in the boundary, or the boundary of $U$ is contained in the basin of a finite family of topological \"rotational\" attractors. This description strongly improves a previous result by Cartwright and Littlewood, by passing from the prime ends compactification to the ambient space. Moreover, the dynamics in a neighborhood of the boundary is semiconjugate to a very simple model dynamics on a planar graph. Other applications involve the decomposability of invariant continua, and realization of rotation numbers by periodic points on circloids.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/457","citationCount":"12","resultStr":"{\"title\":\"A Poincaré–Bendixson theorem for translation lines and applications to prime ends\",\"authors\":\"Andres Koropecki, A. Passeggi\",\"doi\":\"10.4171/CMH/457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an orientation-preserving homeomorphism of the sphere, we prove that if a translation line does not accumulate in a fixed point, then it necessarily spirals towards a topological attractor. This is in analogy with the description of flow lines given by Poincare-Bendixson theorem. We then apply this result to the study of invariant continua without fixed points, in particular to circloids and boundaries of simply connected open sets. Among the applications, we show that if the prime ends rotation number of such an open set $U$ vanishes, then either there is a fixed point in the boundary, or the boundary of $U$ is contained in the basin of a finite family of topological \\\"rotational\\\" attractors. This description strongly improves a previous result by Cartwright and Littlewood, by passing from the prime ends compactification to the ambient space. Moreover, the dynamics in a neighborhood of the boundary is semiconjugate to a very simple model dynamics on a planar graph. Other applications involve the decomposability of invariant continua, and realization of rotation numbers by periodic points on circloids.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/CMH/457\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/457\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/457","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Poincaré–Bendixson theorem for translation lines and applications to prime ends
For an orientation-preserving homeomorphism of the sphere, we prove that if a translation line does not accumulate in a fixed point, then it necessarily spirals towards a topological attractor. This is in analogy with the description of flow lines given by Poincare-Bendixson theorem. We then apply this result to the study of invariant continua without fixed points, in particular to circloids and boundaries of simply connected open sets. Among the applications, we show that if the prime ends rotation number of such an open set $U$ vanishes, then either there is a fixed point in the boundary, or the boundary of $U$ is contained in the basin of a finite family of topological "rotational" attractors. This description strongly improves a previous result by Cartwright and Littlewood, by passing from the prime ends compactification to the ambient space. Moreover, the dynamics in a neighborhood of the boundary is semiconjugate to a very simple model dynamics on a planar graph. Other applications involve the decomposability of invariant continua, and realization of rotation numbers by periodic points on circloids.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.