Fe3O4/水纳米流体对管壳式换热器性能的改善

IF 1.1 Q3 Engineering
Saad M. Najim, A. Hussein, S. Danook
{"title":"Fe3O4/水纳米流体对管壳式换热器性能的改善","authors":"Saad M. Najim, A. Hussein, S. Danook","doi":"10.18186/thermal.1239793","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to study the effect of nanofluid on the performance of the heat exchanger, as well as the heat transfer rate, coefficient of total heat transfer, friction influence and average Nusselt number, and thermal efficiency factor and has been investigated and discussed. In this work, the output heat transfer of Fe3O4/water nanofluid through shell and tube heat exchanger has been numerically investigated under laminar flow. CFD simulations with ANSYS FLUENT 2020R1 were used adopting finite volume approach to solve the governing equations. Numerical calculations were carried out for Reynolds numbers ranging from 200 to 1400, with nanoparticles as the volume fraction (0.2% and 0.35%). The results show that the augmentation in increase Nusselt number and amount of heat transfer rate and the efficiency of nanofluid at the concentration of 0.35% are approximately 19%, 25% and 12% respectively. It was observed through the results that the friction decreases as the Reynolds number increase.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance improvement of shell and tube heat exchanger by using Fe3O4/water nanofluid\",\"authors\":\"Saad M. Najim, A. Hussein, S. Danook\",\"doi\":\"10.18186/thermal.1239793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to study the effect of nanofluid on the performance of the heat exchanger, as well as the heat transfer rate, coefficient of total heat transfer, friction influence and average Nusselt number, and thermal efficiency factor and has been investigated and discussed. In this work, the output heat transfer of Fe3O4/water nanofluid through shell and tube heat exchanger has been numerically investigated under laminar flow. CFD simulations with ANSYS FLUENT 2020R1 were used adopting finite volume approach to solve the governing equations. Numerical calculations were carried out for Reynolds numbers ranging from 200 to 1400, with nanoparticles as the volume fraction (0.2% and 0.35%). The results show that the augmentation in increase Nusselt number and amount of heat transfer rate and the efficiency of nanofluid at the concentration of 0.35% are approximately 19%, 25% and 12% respectively. It was observed through the results that the friction decreases as the Reynolds number increase.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1239793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1239793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究纳米流体对换热器性能的影响,以及对换热速率、总换热系数、摩擦影响和平均努塞尔数以及热效率因子的影响,并进行了研究和讨论。在层流条件下,对Fe3O4/水纳米流体通过管壳式换热器的输出换热进行了数值研究。利用ANSYS FLUENT 2020R1软件进行CFD仿真,采用有限体积法求解控制方程。在雷诺数为200 ~ 1400的条件下,以纳米颗粒为体积分数(0.2%和0.35%)进行了数值计算。结果表明,在0.35%的浓度下,纳米流体的增加努塞尔数、换热率和效率分别提高了19%、25%和12%左右。结果表明,摩擦随雷诺数的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance improvement of shell and tube heat exchanger by using Fe3O4/water nanofluid
The objective of this paper is to study the effect of nanofluid on the performance of the heat exchanger, as well as the heat transfer rate, coefficient of total heat transfer, friction influence and average Nusselt number, and thermal efficiency factor and has been investigated and discussed. In this work, the output heat transfer of Fe3O4/water nanofluid through shell and tube heat exchanger has been numerically investigated under laminar flow. CFD simulations with ANSYS FLUENT 2020R1 were used adopting finite volume approach to solve the governing equations. Numerical calculations were carried out for Reynolds numbers ranging from 200 to 1400, with nanoparticles as the volume fraction (0.2% and 0.35%). The results show that the augmentation in increase Nusselt number and amount of heat transfer rate and the efficiency of nanofluid at the concentration of 0.35% are approximately 19%, 25% and 12% respectively. It was observed through the results that the friction decreases as the Reynolds number increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信