Ablowitz-Ladik晶格和Schur流的大偏差

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Guido Mazzuca, Ronan Memin
{"title":"Ablowitz-Ladik晶格和Schur流的大偏差","authors":"Guido Mazzuca, Ronan Memin","doi":"10.1214/23-EJP941","DOIUrl":null,"url":null,"abstract":"We consider the Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, and the Schur flow. We derive large deviations principles for the distribution of the empirical measures of the equilibrium measures for these ensembles. As a consequence, we deduce their almost sure convergence. Moreover, we are able to characterize their limit in terms of the equilibrium measure of the Circular, and the Jacobi beta ensemble respectively.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Large deviations for Ablowitz-Ladik lattice, and the Schur flow\",\"authors\":\"Guido Mazzuca, Ronan Memin\",\"doi\":\"10.1214/23-EJP941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, and the Schur flow. We derive large deviations principles for the distribution of the empirical measures of the equilibrium measures for these ensembles. As a consequence, we deduce their almost sure convergence. Moreover, we are able to characterize their limit in terms of the equilibrium measure of the Circular, and the Jacobi beta ensemble respectively.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-EJP941\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-EJP941","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑了Ablowitz-Ladik晶格的广义Gibbs系综和Schur流。我们为这些组合的平衡测度的经验测度的分布导出了大偏差原理。因此,我们推断出它们几乎肯定是收敛的。此外,我们还能够分别用圆系和雅可比系综的平衡测量来描述它们的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large deviations for Ablowitz-Ladik lattice, and the Schur flow
We consider the Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, and the Schur flow. We derive large deviations principles for the distribution of the empirical measures of the equilibrium measures for these ensembles. As a consequence, we deduce their almost sure convergence. Moreover, we are able to characterize their limit in terms of the equilibrium measure of the Circular, and the Jacobi beta ensemble respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信