$(n,d)$-$\mathcal{X}_R$phantom和$(n,d)$-$_R\mathcal{X}$-cophantom态射

IF 0.5 Q3 MATHEMATICS
Mourad Khattari, D. Bennis
{"title":"$(n,d)$-$\\mathcal{X}_R$phantom和$(n,d)$-$_R\\mathcal{X}$-cophantom态射","authors":"Mourad Khattari, D. Bennis","doi":"10.24330/ieja.1260503","DOIUrl":null,"url":null,"abstract":"Several authors have been interested in some like phantom \nmorphisms such as $d$-phantoms, \n$d$-$\\operatorname{Ext}$-phantoms, neat-phantom morphisms, clean- \ncophantom morphisms, $RD$-phantom morphisms and \n$RD$-$\\operatorname{Ext}$-phantom morphisms. In this paper, we \nprove that these notions can be unified. We are mainly interested \nin proving that the majority of the existing results hold true in \nour general framework.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$(n,d)$-$\\\\mathcal{X}_R$-phantom and $(n,d)$-$_R\\\\mathcal{X}$-cophantom morphisms\",\"authors\":\"Mourad Khattari, D. Bennis\",\"doi\":\"10.24330/ieja.1260503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several authors have been interested in some like phantom \\nmorphisms such as $d$-phantoms, \\n$d$-$\\\\operatorname{Ext}$-phantoms, neat-phantom morphisms, clean- \\ncophantom morphisms, $RD$-phantom morphisms and \\n$RD$-$\\\\operatorname{Ext}$-phantom morphisms. In this paper, we \\nprove that these notions can be unified. We are mainly interested \\nin proving that the majority of the existing results hold true in \\nour general framework.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1260503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1260503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一些作者对一些幻影态射很感兴趣,如$d$-phantom, $d$-$\operatorname{Ext}$-phantom,整洁幻影态射,干净幻影态射,$RD$-phantom态射和$RD$-$\operatorname{Ext}$-phantom态射。在本文中,我们证明了这些概念可以统一。我们主要感兴趣的是证明大多数现有结果在我们的一般框架下是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$(n,d)$-$\mathcal{X}_R$-phantom and $(n,d)$-$_R\mathcal{X}$-cophantom morphisms
Several authors have been interested in some like phantom morphisms such as $d$-phantoms, $d$-$\operatorname{Ext}$-phantoms, neat-phantom morphisms, clean- cophantom morphisms, $RD$-phantom morphisms and $RD$-$\operatorname{Ext}$-phantom morphisms. In this paper, we prove that these notions can be unified. We are mainly interested in proving that the majority of the existing results hold true in our general framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信