Sobolev框架下分数阶导数的链式法则

IF 0.9 4区 数学 Q2 MATHEMATICS
K. Fujiwara
{"title":"Sobolev框架下分数阶导数的链式法则","authors":"K. Fujiwara","doi":"10.7153/mia-2021-24-77","DOIUrl":null,"url":null,"abstract":"A chain rule for power product is studied with fractional differential operators in the framework of Sobolev spaces. The fractional differential operators are defined by the Fourier multipliers. The chain rule is considered newly in the case where the order of differential operators is between one and two. The study is based on the analogy of the classical chain rule or Leibniz rule.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Remark on the Chain rule of fractional derivative in the Sobolev framework\",\"authors\":\"K. Fujiwara\",\"doi\":\"10.7153/mia-2021-24-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A chain rule for power product is studied with fractional differential operators in the framework of Sobolev spaces. The fractional differential operators are defined by the Fourier multipliers. The chain rule is considered newly in the case where the order of differential operators is between one and two. The study is based on the analogy of the classical chain rule or Leibniz rule.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2021-24-77\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-77","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

研究了Sobolev空间框架下分数阶微分算子幂乘积的链式法则。分数阶微分算子由傅里叶乘数定义。当微分算子的阶数在1和2之间时,链式法则被重新考虑。该研究是基于对经典链式法则或莱布尼茨法则的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remark on the Chain rule of fractional derivative in the Sobolev framework
A chain rule for power product is studied with fractional differential operators in the framework of Sobolev spaces. The fractional differential operators are defined by the Fourier multipliers. The chain rule is considered newly in the case where the order of differential operators is between one and two. The study is based on the analogy of the classical chain rule or Leibniz rule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信