{"title":"用三轴试验确定土工格栅加筋砂抗剪强度","authors":"Š. Skuodis, N. Dirgėlienė, Jurgis Medzvieckas","doi":"10.2478/sgem-2020-0005","DOIUrl":null,"url":null,"abstract":"Abstract Geogrids are widely used in civil engineering projects to reinforce road and railway structures. This paper presents research on the shearing strength of soil samples that have been reinforced with geogrids. The relationship between soil and geogrids is explored and evaluated by modeling the mechanical behavior of heterogeneous materials. For the purposes of this research, data obtained from tests of unreinforced sand samples with triaxial cells were compared with the data obtained from tests of reinforced sand samples. It was found that the shearing strength for reinforced samples was higher (from 9% to 49%) compared to unreinforced samples. Some damage to the geogrid was detected during the experiment, and for this reason, the same tests were numerically simulated for both unreinforced samples and samples reinforced with geogrids. Numerical simulations revealed the main reasons for damage to the geogrids during triaxial testing.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"42 1","pages":"341 - 354"},"PeriodicalIF":0.7000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using Triaxial Tests to Determine the Shearing Strength of Geogrid-Reinforced Sand\",\"authors\":\"Š. Skuodis, N. Dirgėlienė, Jurgis Medzvieckas\",\"doi\":\"10.2478/sgem-2020-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Geogrids are widely used in civil engineering projects to reinforce road and railway structures. This paper presents research on the shearing strength of soil samples that have been reinforced with geogrids. The relationship between soil and geogrids is explored and evaluated by modeling the mechanical behavior of heterogeneous materials. For the purposes of this research, data obtained from tests of unreinforced sand samples with triaxial cells were compared with the data obtained from tests of reinforced sand samples. It was found that the shearing strength for reinforced samples was higher (from 9% to 49%) compared to unreinforced samples. Some damage to the geogrid was detected during the experiment, and for this reason, the same tests were numerically simulated for both unreinforced samples and samples reinforced with geogrids. Numerical simulations revealed the main reasons for damage to the geogrids during triaxial testing.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":\"42 1\",\"pages\":\"341 - 354\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2020-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Using Triaxial Tests to Determine the Shearing Strength of Geogrid-Reinforced Sand
Abstract Geogrids are widely used in civil engineering projects to reinforce road and railway structures. This paper presents research on the shearing strength of soil samples that have been reinforced with geogrids. The relationship between soil and geogrids is explored and evaluated by modeling the mechanical behavior of heterogeneous materials. For the purposes of this research, data obtained from tests of unreinforced sand samples with triaxial cells were compared with the data obtained from tests of reinforced sand samples. It was found that the shearing strength for reinforced samples was higher (from 9% to 49%) compared to unreinforced samples. Some damage to the geogrid was detected during the experiment, and for this reason, the same tests were numerically simulated for both unreinforced samples and samples reinforced with geogrids. Numerical simulations revealed the main reasons for damage to the geogrids during triaxial testing.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories