基于kriging响应面法和多目标优化算法的小型水下航行器船体形状优化

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE
Brodogradnja Pub Date : 2022-07-01 DOI:10.21278/brod73307
Shuping Hou, Zejiang Zhang, Hongtai Lian, X. Xing, Haixia Gong, Xiujun Xu
{"title":"基于kriging响应面法和多目标优化算法的小型水下航行器船体形状优化","authors":"Shuping Hou, Zejiang Zhang, Hongtai Lian, X. Xing, Haixia Gong, Xiujun Xu","doi":"10.21278/brod73307","DOIUrl":null,"url":null,"abstract":"Small underwater vehicles have unique advantages in ocean exploration. The resistance and volume of a vehicle are key factors affecting its operation time underwater. This paper aims to develop an effective method to obtain the optimal hull shape of a small underwater vehicle using Kriging-based response surface method (RSM) and multi-objective optimization algorithm. Firstly, the hydrodynamic performance of a small underwater vehicle is numerically investigated using computational fluid dynamics (CFD) method and the value range of related design variables is determined. The mesh convergence is verified to ensure the accuracy of the calculation results. Then, by means of the Latin hypercube sampling (LHS) design of simulation, the Kriging-based RSM model is developed according to the relation between each design variable of the vehicle and the output parameters applied to the vehicle. Based on the Kriging-based RSM model, the optimal hull shape of the vehicle is determined by using Screening and MOGA. As results, the vehicle resistance reduces and volume increases obviously.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"HULL SHAPE OPTIMIZATION OF SMALL UNDERWATER VEHICLE BASED ON KRIGING-BASED RESPONSE SURFACE METHOD AND MULTI-OBJECTIVE OPTIMIZATION ALGORITHM\",\"authors\":\"Shuping Hou, Zejiang Zhang, Hongtai Lian, X. Xing, Haixia Gong, Xiujun Xu\",\"doi\":\"10.21278/brod73307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small underwater vehicles have unique advantages in ocean exploration. The resistance and volume of a vehicle are key factors affecting its operation time underwater. This paper aims to develop an effective method to obtain the optimal hull shape of a small underwater vehicle using Kriging-based response surface method (RSM) and multi-objective optimization algorithm. Firstly, the hydrodynamic performance of a small underwater vehicle is numerically investigated using computational fluid dynamics (CFD) method and the value range of related design variables is determined. The mesh convergence is verified to ensure the accuracy of the calculation results. Then, by means of the Latin hypercube sampling (LHS) design of simulation, the Kriging-based RSM model is developed according to the relation between each design variable of the vehicle and the output parameters applied to the vehicle. Based on the Kriging-based RSM model, the optimal hull shape of the vehicle is determined by using Screening and MOGA. As results, the vehicle resistance reduces and volume increases obviously.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod73307\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 4

摘要

小型水下航行器在海洋探测中具有独特的优势。潜水器的阻力和体积是影响其水下作业时间的关键因素。本文旨在利用基于克里格的响应面法和多目标优化算法,开发一种获得小型水下航行器最优船体形状的有效方法。首先,利用计算流体动力学(CFD)方法对小型水下航行器的水动力性能进行了数值研究,确定了相关设计变量的取值范围。验证了网格的收敛性,保证了计算结果的准确性。然后,通过拉丁超立方体采样(LHS)仿真设计,根据车辆的每个设计变量与应用于车辆的输出参数之间的关系,开发了基于克里格的RSM模型。在基于Kriging的RSM模型的基础上,利用筛选和MOGA确定了车辆的最优船体形状。结果,车辆阻力减小,体积明显增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HULL SHAPE OPTIMIZATION OF SMALL UNDERWATER VEHICLE BASED ON KRIGING-BASED RESPONSE SURFACE METHOD AND MULTI-OBJECTIVE OPTIMIZATION ALGORITHM
Small underwater vehicles have unique advantages in ocean exploration. The resistance and volume of a vehicle are key factors affecting its operation time underwater. This paper aims to develop an effective method to obtain the optimal hull shape of a small underwater vehicle using Kriging-based response surface method (RSM) and multi-objective optimization algorithm. Firstly, the hydrodynamic performance of a small underwater vehicle is numerically investigated using computational fluid dynamics (CFD) method and the value range of related design variables is determined. The mesh convergence is verified to ensure the accuracy of the calculation results. Then, by means of the Latin hypercube sampling (LHS) design of simulation, the Kriging-based RSM model is developed according to the relation between each design variable of the vehicle and the output parameters applied to the vehicle. Based on the Kriging-based RSM model, the optimal hull shape of the vehicle is determined by using Screening and MOGA. As results, the vehicle resistance reduces and volume increases obviously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信