{"title":"一个无监督的计算管道识别潜在的可重复利用的药物治疗亨廷顿氏病和多发性硬化症","authors":"Luca Menestrina, Maurizio Recanatini","doi":"10.1016/j.ailsci.2022.100042","DOIUrl":null,"url":null,"abstract":"<div><p>Drug repurposing consists in identifying additional uses for known drugs and, since these new findings are built on previous knowledge, it reduces both the length and the costs of the drug development. In this work, we assembled an automated computational pipeline for drug repurposing, integrating also a network-based analysis for screening the possible drug combinations. The selection of drugs relies both on their proximity to the disease on the protein-protein interactome and on their influence on the expression of disease-related genes. Combined therapies are then prioritized on the basis of the drugs’ separation on the human interactome and the known drug-drug interactions. We eventually collected a number of molecules, and their plausible combinations, that could be proposed for the treatment of Huntington's disease and multiple sclerosis. Finally, this pipeline could potentially provide new suggestions also for other complex disorders.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"2 ","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318522000125/pdfft?md5=02a08224e3d5097be5747fc8a22c3572&pid=1-s2.0-S2667318522000125-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An unsupervised computational pipeline identifies potential repurposable drugs to treat Huntington's disease and multiple sclerosis\",\"authors\":\"Luca Menestrina, Maurizio Recanatini\",\"doi\":\"10.1016/j.ailsci.2022.100042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drug repurposing consists in identifying additional uses for known drugs and, since these new findings are built on previous knowledge, it reduces both the length and the costs of the drug development. In this work, we assembled an automated computational pipeline for drug repurposing, integrating also a network-based analysis for screening the possible drug combinations. The selection of drugs relies both on their proximity to the disease on the protein-protein interactome and on their influence on the expression of disease-related genes. Combined therapies are then prioritized on the basis of the drugs’ separation on the human interactome and the known drug-drug interactions. We eventually collected a number of molecules, and their plausible combinations, that could be proposed for the treatment of Huntington's disease and multiple sclerosis. Finally, this pipeline could potentially provide new suggestions also for other complex disorders.</p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":\"2 \",\"pages\":\"Article 100042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667318522000125/pdfft?md5=02a08224e3d5097be5747fc8a22c3572&pid=1-s2.0-S2667318522000125-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318522000125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318522000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An unsupervised computational pipeline identifies potential repurposable drugs to treat Huntington's disease and multiple sclerosis
Drug repurposing consists in identifying additional uses for known drugs and, since these new findings are built on previous knowledge, it reduces both the length and the costs of the drug development. In this work, we assembled an automated computational pipeline for drug repurposing, integrating also a network-based analysis for screening the possible drug combinations. The selection of drugs relies both on their proximity to the disease on the protein-protein interactome and on their influence on the expression of disease-related genes. Combined therapies are then prioritized on the basis of the drugs’ separation on the human interactome and the known drug-drug interactions. We eventually collected a number of molecules, and their plausible combinations, that could be proposed for the treatment of Huntington's disease and multiple sclerosis. Finally, this pipeline could potentially provide new suggestions also for other complex disorders.
Artificial intelligence in the life sciencesPharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)