晶圆键合技术在MEMS、高功率电子、光电子和光流控领域的进展

IF 6.7 3区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jikai Xu, Yunchen Du, Yanhong Tian, Chenxi Wang
{"title":"晶圆键合技术在MEMS、高功率电子、光电子和光流控领域的进展","authors":"Jikai Xu, Yunchen Du, Yanhong Tian, Chenxi Wang","doi":"10.1080/15599612.2020.1857890","DOIUrl":null,"url":null,"abstract":"Abstract Wafer bonding is an attractive technology that can join homo/heterogeneous materials into one composite. It has a wide range of applications in the micro-electro-mechanical system (MEMS), integrated circuit, consumer and power electronics, micro/nanofluidics, etc. Since all devices on the same wafer are sealed and tested at wafer size, it brings lots of benefits compared with the component-level packaging, such as substantial savings in time, materials, and labor. In this review, we firstly introduce the low- and room-temperature Si bonding and their applications in MEMS fabrication. Subsequently, we present applications of the third-generation semiconductor bonding towards optoelectronics. Due to the research in the electro-optical modulation of lithium niobate (LiNbO3) has made revolutionary progress in recent years, we also show the bonding method towards single-crystal LiNbO3 thin-film fabrication. Finally, we set our sights on the bonding of infrared materials, which might be the next research hotspot for the emerging ultrasensitive sensors.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"14 1","pages":"94 - 118"},"PeriodicalIF":6.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2020.1857890","citationCount":"18","resultStr":"{\"title\":\"Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics\",\"authors\":\"Jikai Xu, Yunchen Du, Yanhong Tian, Chenxi Wang\",\"doi\":\"10.1080/15599612.2020.1857890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Wafer bonding is an attractive technology that can join homo/heterogeneous materials into one composite. It has a wide range of applications in the micro-electro-mechanical system (MEMS), integrated circuit, consumer and power electronics, micro/nanofluidics, etc. Since all devices on the same wafer are sealed and tested at wafer size, it brings lots of benefits compared with the component-level packaging, such as substantial savings in time, materials, and labor. In this review, we firstly introduce the low- and room-temperature Si bonding and their applications in MEMS fabrication. Subsequently, we present applications of the third-generation semiconductor bonding towards optoelectronics. Due to the research in the electro-optical modulation of lithium niobate (LiNbO3) has made revolutionary progress in recent years, we also show the bonding method towards single-crystal LiNbO3 thin-film fabrication. Finally, we set our sights on the bonding of infrared materials, which might be the next research hotspot for the emerging ultrasensitive sensors.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"14 1\",\"pages\":\"94 - 118\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2020.1857890\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2020.1857890\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2020.1857890","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 18

摘要

摘要晶片键合是一种很有吸引力的技术,可以将同质/异质材料连接成一种复合材料。它在微机电系统(MEMS)、集成电路、消费电子和电力电子、微/纳米流体等领域有着广泛的应用。由于同一晶圆上的所有设备都是按照晶圆尺寸进行密封和测试的,因此与组件级封装相比,它带来了许多好处,例如在时间、材料和劳动力方面大幅节省。在这篇综述中,我们首先介绍了低温和室温硅键合及其在MEMS制造中的应用。随后,我们介绍了第三代半导体键合在光电子领域的应用。由于近年来铌酸锂(LiNbO3)的电光调制研究取得了革命性的进展,我们还展示了单晶LiNbO3薄膜的键合方法。最后,我们将目光投向了红外材料的键合,这可能是新兴超灵敏传感器的下一个研究热点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics
Abstract Wafer bonding is an attractive technology that can join homo/heterogeneous materials into one composite. It has a wide range of applications in the micro-electro-mechanical system (MEMS), integrated circuit, consumer and power electronics, micro/nanofluidics, etc. Since all devices on the same wafer are sealed and tested at wafer size, it brings lots of benefits compared with the component-level packaging, such as substantial savings in time, materials, and labor. In this review, we firstly introduce the low- and room-temperature Si bonding and their applications in MEMS fabrication. Subsequently, we present applications of the third-generation semiconductor bonding towards optoelectronics. Due to the research in the electro-optical modulation of lithium niobate (LiNbO3) has made revolutionary progress in recent years, we also show the bonding method towards single-crystal LiNbO3 thin-film fabrication. Finally, we set our sights on the bonding of infrared materials, which might be the next research hotspot for the emerging ultrasensitive sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optomechatronics
International Journal of Optomechatronics 工程技术-工程:电子与电气
CiteScore
9.30
自引率
0.00%
发文量
3
审稿时长
3 months
期刊介绍: International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics. Topics you can submit include, but are not limited to: -Adaptive optics- Optomechanics- Machine vision, tracking and control- Image-based micro-/nano- manipulation- Control engineering for optomechatronics- Optical metrology- Optical sensors and light-based actuators- Optomechatronics for astronomy and space applications- Optical-based inspection and fault diagnosis- Micro-/nano- optomechanical systems (MOEMS)- Optofluidics- Optical assembly and packaging- Optical and vision-based manufacturing, processes, monitoring, and control- Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信