具有传递约化自同构群的闭$\ mathm {G}_2$-结构

IF 0.5 4区 数学 Q3 MATHEMATICS
F. Podestà, Alberto Raffero
{"title":"具有传递约化自同构群的闭$\\ mathm {G}_2$-结构","authors":"F. Podestà, Alberto Raffero","doi":"10.4310/AJM.2021.v25.n6.a6","DOIUrl":null,"url":null,"abstract":". We provide the complete classification of seven-dimensional manifolds endowed with a closed non-parallel G 2 -structure and admitting a transitive reductive group G of automorphisms. In particular, we show that the center of G is one-dimensional and the manifold is the Riemannian product of a flat factor and a non-compact homogeneous six-dimensional manifold endowed with an invariant strictly symplectic half-flat SU(3)-structure.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed $\\\\mathrm{G}_2$-structures with a transitive reductive group of automorphisms\",\"authors\":\"F. Podestà, Alberto Raffero\",\"doi\":\"10.4310/AJM.2021.v25.n6.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We provide the complete classification of seven-dimensional manifolds endowed with a closed non-parallel G 2 -structure and admitting a transitive reductive group G of automorphisms. In particular, we show that the center of G is one-dimensional and the manifold is the Riemannian product of a flat factor and a non-compact homogeneous six-dimensional manifold endowed with an invariant strictly symplectic half-flat SU(3)-structure.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/AJM.2021.v25.n6.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2021.v25.n6.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

.我们给出了具有闭的非平行G2-结构并允许自同构的传递还原群G的七维流形的完全分类。特别地,我们证明了G的中心是一维的,并且流形是一个因子和一个非紧齐次六维流形的黎曼乘积,该流形被赋予SU(3)-结构的不变的严格辛半流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed $\mathrm{G}_2$-structures with a transitive reductive group of automorphisms
. We provide the complete classification of seven-dimensional manifolds endowed with a closed non-parallel G 2 -structure and admitting a transitive reductive group G of automorphisms. In particular, we show that the center of G is one-dimensional and the manifold is the Riemannian product of a flat factor and a non-compact homogeneous six-dimensional manifold endowed with an invariant strictly symplectic half-flat SU(3)-structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信