薄sus303ss与Cu异种金属组合的单脉冲激光焊接研究

IF 3.3 Q2 ENGINEERING, MANUFACTURING
Ruining Huang, Xuehao Huang, Junqiang Feng
{"title":"薄sus303ss与Cu异种金属组合的单脉冲激光焊接研究","authors":"Ruining Huang, Xuehao Huang, Junqiang Feng","doi":"10.3390/jmmp7050161","DOIUrl":null,"url":null,"abstract":"The present study investigated the dissimilar metal combination of SUS303 stainless steel (SS) and pure copper C19210 by utilizing a fiber pulse laser to perform lap welding. The weld quality was evaluated through metallurgical and mechanical examinations, including scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive spectroscopy (EDS), as well as tensile and shear tests. The cross-section of the weld joints was observed to examine the penetration inside the molten zone of the pulse laser welding. The incomplete weld penetration depth was confirmed by analyzing the molten pool geometry, which indicated that the penetration depth was proportional to the pulse heat energy input. EDS analysis demonstrated that interdiffusion and dissolution of Cu and SS occurred inside the weld pool, although only a limited amount of Cu was melted. Microhardness (MH) exploration revealed the hardness of the molten zone was lower than that of the heat-affected zone (HAZ) on the SS side, while the hardness on the Cu side, closer to the molten zone, was higher. The results of the tensile test indicated that the fracture occurred in the HAZ on the Cu side, displaying a dimpled fracture mode characteristic of ductile fracture.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Single-Pulse Laser Welding of Dissimilar Metal Combination of Thin SUS303 SS and Cu\",\"authors\":\"Ruining Huang, Xuehao Huang, Junqiang Feng\",\"doi\":\"10.3390/jmmp7050161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study investigated the dissimilar metal combination of SUS303 stainless steel (SS) and pure copper C19210 by utilizing a fiber pulse laser to perform lap welding. The weld quality was evaluated through metallurgical and mechanical examinations, including scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive spectroscopy (EDS), as well as tensile and shear tests. The cross-section of the weld joints was observed to examine the penetration inside the molten zone of the pulse laser welding. The incomplete weld penetration depth was confirmed by analyzing the molten pool geometry, which indicated that the penetration depth was proportional to the pulse heat energy input. EDS analysis demonstrated that interdiffusion and dissolution of Cu and SS occurred inside the weld pool, although only a limited amount of Cu was melted. Microhardness (MH) exploration revealed the hardness of the molten zone was lower than that of the heat-affected zone (HAZ) on the SS side, while the hardness on the Cu side, closer to the molten zone, was higher. The results of the tensile test indicated that the fracture occurred in the HAZ on the Cu side, displaying a dimpled fracture mode characteristic of ductile fracture.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp7050161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7050161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

采用光纤脉冲激光对SUS303不锈钢(SS)与纯铜C19210的异种金属组合进行搭接焊接。通过金相和力学检查,包括扫描电镜(SEM)、光学显微镜(OM)、能量色散谱(EDS)以及拉伸和剪切测试,对焊缝质量进行了评估。通过对焊缝截面的观察,研究了脉冲激光焊接熔区内的熔透情况。通过对熔池几何形状的分析,确定了熔池熔透深度不完全,熔透深度与脉冲能量输入成正比。EDS分析表明,在熔池内Cu和SS发生了相互扩散和溶解,但只有少量的Cu被熔化。显微硬度(MH)探测表明,熔区硬度低于SS侧热影响区硬度,而靠近熔区的Cu侧硬度较高。拉伸试验结果表明,断裂发生在Cu侧热影响区内,呈现韧性断裂的韧窝断裂模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Single-Pulse Laser Welding of Dissimilar Metal Combination of Thin SUS303 SS and Cu
The present study investigated the dissimilar metal combination of SUS303 stainless steel (SS) and pure copper C19210 by utilizing a fiber pulse laser to perform lap welding. The weld quality was evaluated through metallurgical and mechanical examinations, including scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive spectroscopy (EDS), as well as tensile and shear tests. The cross-section of the weld joints was observed to examine the penetration inside the molten zone of the pulse laser welding. The incomplete weld penetration depth was confirmed by analyzing the molten pool geometry, which indicated that the penetration depth was proportional to the pulse heat energy input. EDS analysis demonstrated that interdiffusion and dissolution of Cu and SS occurred inside the weld pool, although only a limited amount of Cu was melted. Microhardness (MH) exploration revealed the hardness of the molten zone was lower than that of the heat-affected zone (HAZ) on the SS side, while the hardness on the Cu side, closer to the molten zone, was higher. The results of the tensile test indicated that the fracture occurred in the HAZ on the Cu side, displaying a dimpled fracture mode characteristic of ductile fracture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信