Hsin-Yun Ching, Rigoberto Fl'orez, Antara Mukherjee
{"title":"三角形阵列内的积分图族","authors":"Hsin-Yun Ching, Rigoberto Fl'orez, Antara Mukherjee","doi":"10.1515/spma-2020-0116","DOIUrl":null,"url":null,"abstract":"Abstract The determinant Hosoya triangle, is a triangular array where the entries are the determinants of two-by-two Fibonacci matrices. The determinant Hosoya triangle mod 2 gives rise to three infinite families of graphs, that are formed by complete product (join) of (the union of) two complete graphs with an empty graph. We give a necessary and sufficient condition for a graph from these families to be integral. Some features of these graphs are: they are integral cographs, all graphs have at most five distinct eigenvalues, all graphs are either d-regular graphs with d =2, 4, 6, . . . or almost-regular graphs, and some of them are Laplacian integral. Finally we extend some of these results to the Hosoya triangle.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"8 1","pages":"257 - 273"},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0116","citationCount":"3","resultStr":"{\"title\":\"Families of Integral Cographs within a Triangular Array\",\"authors\":\"Hsin-Yun Ching, Rigoberto Fl'orez, Antara Mukherjee\",\"doi\":\"10.1515/spma-2020-0116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The determinant Hosoya triangle, is a triangular array where the entries are the determinants of two-by-two Fibonacci matrices. The determinant Hosoya triangle mod 2 gives rise to three infinite families of graphs, that are formed by complete product (join) of (the union of) two complete graphs with an empty graph. We give a necessary and sufficient condition for a graph from these families to be integral. Some features of these graphs are: they are integral cographs, all graphs have at most five distinct eigenvalues, all graphs are either d-regular graphs with d =2, 4, 6, . . . or almost-regular graphs, and some of them are Laplacian integral. Finally we extend some of these results to the Hosoya triangle.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"8 1\",\"pages\":\"257 - 273\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0116\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Families of Integral Cographs within a Triangular Array
Abstract The determinant Hosoya triangle, is a triangular array where the entries are the determinants of two-by-two Fibonacci matrices. The determinant Hosoya triangle mod 2 gives rise to three infinite families of graphs, that are formed by complete product (join) of (the union of) two complete graphs with an empty graph. We give a necessary and sufficient condition for a graph from these families to be integral. Some features of these graphs are: they are integral cographs, all graphs have at most five distinct eigenvalues, all graphs are either d-regular graphs with d =2, 4, 6, . . . or almost-regular graphs, and some of them are Laplacian integral. Finally we extend some of these results to the Hosoya triangle.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.