多维立方体的加倍与可构造性

Q4 Mathematics
Julius B. Barbanel
{"title":"多维立方体的加倍与可构造性","authors":"Julius B. Barbanel","doi":"10.1080/0025570X.2022.2127300","DOIUrl":null,"url":null,"abstract":"Summary It is known that the three classical geometric construction problems introduced by the ancient Greeks: trisecting an angle, squaring a circle, and doubling a cube, cannot be solved using the Euclidean tools. However, ancient Greek mathematicians solved these three problems using other means. We present solutions to the doubling-the-cube problem using ideas that go beyond the Euclidean tools, and we consider generalizations to higher dimensions.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"95 1","pages":"465 - 481"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubling the Cube and Constructability in Higher Dimensions\",\"authors\":\"Julius B. Barbanel\",\"doi\":\"10.1080/0025570X.2022.2127300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary It is known that the three classical geometric construction problems introduced by the ancient Greeks: trisecting an angle, squaring a circle, and doubling a cube, cannot be solved using the Euclidean tools. However, ancient Greek mathematicians solved these three problems using other means. We present solutions to the doubling-the-cube problem using ideas that go beyond the Euclidean tools, and we consider generalizations to higher dimensions.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":\"95 1\",\"pages\":\"465 - 481\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2022.2127300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2022.2127300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,古希腊人提出的三个经典几何构造问题:角的三分、圆的平方和立方体的加倍,是无法用欧几里得工具解决的。然而,古希腊数学家用其他方法解决了这三个问题。我们使用超越欧几里得工具的思想提出了立方体加倍问题的解决方案,我们考虑将其推广到更高的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doubling the Cube and Constructability in Higher Dimensions
Summary It is known that the three classical geometric construction problems introduced by the ancient Greeks: trisecting an angle, squaring a circle, and doubling a cube, cannot be solved using the Euclidean tools. However, ancient Greek mathematicians solved these three problems using other means. We present solutions to the doubling-the-cube problem using ideas that go beyond the Euclidean tools, and we consider generalizations to higher dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信