神经网络与Shuffled Frog跳跃算法在数控加工监控中的集成

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
A. Goli, E. B. Tirkolaee, G. Weber
{"title":"神经网络与Shuffled Frog跳跃算法在数控加工监控中的集成","authors":"A. Goli, E. B. Tirkolaee, G. Weber","doi":"10.2478/fcds-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract This paper addresses Acoustic Emission (AE) from Computer Numerical Control (CNC) machining operations. Experimental measurements are performed on the CNC lathe sensors to provide the power consumption data. To this end, a hybrid methodology based on the integration of an Artificial Neural Network (ANN) and a Shuffled Frog-Leaping Algorithm (SFLA) is applied to the data resulting from these measurements for data fusion from the sensors which is called SFLA-ANN. The initial weights of ANN are selected using SFLA. The goal is to assess the potency of the signal periodic component among these sensors. The efficiency of the proposed SFLA-ANN method is analyzed compared to hybrid methodologies of Simulated Annealing (SA) algorithm and ANN (SA-ANN) and Genetic Algorithm (GA) and ANN (GA-ANN).","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"46 1","pages":"27 - 42"},"PeriodicalIF":1.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Integration of Neural Network and Shuffled Frog-Leaping Algorithm for CNC Machining Monitoring\",\"authors\":\"A. Goli, E. B. Tirkolaee, G. Weber\",\"doi\":\"10.2478/fcds-2021-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper addresses Acoustic Emission (AE) from Computer Numerical Control (CNC) machining operations. Experimental measurements are performed on the CNC lathe sensors to provide the power consumption data. To this end, a hybrid methodology based on the integration of an Artificial Neural Network (ANN) and a Shuffled Frog-Leaping Algorithm (SFLA) is applied to the data resulting from these measurements for data fusion from the sensors which is called SFLA-ANN. The initial weights of ANN are selected using SFLA. The goal is to assess the potency of the signal periodic component among these sensors. The efficiency of the proposed SFLA-ANN method is analyzed compared to hybrid methodologies of Simulated Annealing (SA) algorithm and ANN (SA-ANN) and Genetic Algorithm (GA) and ANN (GA-ANN).\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"46 1\",\"pages\":\"27 - 42\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2021-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9

摘要

摘要本文研究了计算机数控(CNC)加工过程中的声发射问题。对数控车床传感器进行了实验测量,提供了功耗数据。为此,将基于人工神经网络(ANN)和洗漱蛙跳算法(SFLA)的混合方法应用于这些测量数据的融合,称为SFLA-ANN。使用SFLA选择人工神经网络的初始权值。目标是评估这些传感器之间的信号周期分量的效力。与模拟退火(SA)算法和人工神经网络(SA-ANN)、遗传算法(GA)和人工神经网络(GA-ANN)混合方法的效率进行了对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integration of Neural Network and Shuffled Frog-Leaping Algorithm for CNC Machining Monitoring
Abstract This paper addresses Acoustic Emission (AE) from Computer Numerical Control (CNC) machining operations. Experimental measurements are performed on the CNC lathe sensors to provide the power consumption data. To this end, a hybrid methodology based on the integration of an Artificial Neural Network (ANN) and a Shuffled Frog-Leaping Algorithm (SFLA) is applied to the data resulting from these measurements for data fusion from the sensors which is called SFLA-ANN. The initial weights of ANN are selected using SFLA. The goal is to assess the potency of the signal periodic component among these sensors. The efficiency of the proposed SFLA-ANN method is analyzed compared to hybrid methodologies of Simulated Annealing (SA) algorithm and ANN (SA-ANN) and Genetic Algorithm (GA) and ANN (GA-ANN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信