利用分岔探针的毫米波宽频波导-微带转换

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bo Zhang, Yong Zhang, Chengkai Wu, Tianhao Cao
{"title":"利用分岔探针的毫米波宽频波导-微带转换","authors":"Bo Zhang, Yong Zhang, Chengkai Wu, Tianhao Cao","doi":"10.1109/LMWC.2022.3169628","DOIUrl":null,"url":null,"abstract":"In this letter, a novel waveguide-to-microstrip vertical transition using a bifurcated probe is presented. The bifurcated probe consists of a pair of thin parallel $E$ -plane probes and bend branches, which forms a strong current crowding effect for electromagnetic energy coupling from rectangular waveguide and broadband impendence matching. Therefore, the bifurcated probe can effectively reduce the sensitivity of probe dimensions to transition performance and design difficulty. To demonstrate this concept, a back-to-back bifurcated probe transition operating at WR-4.3 band (170–260 GHz) was fabricated and measured. Measured results show the double transition covers the entire WR-4.3 band with a minimum return loss (RL) of 16 dB and an average insertion loss (IL) of 0.84 dB, respectively.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1031-1034"},"PeriodicalIF":2.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Millimeter-Wave Broadband Waveguide-to- Microstrip Transition Using a Bifurcated Probe\",\"authors\":\"Bo Zhang, Yong Zhang, Chengkai Wu, Tianhao Cao\",\"doi\":\"10.1109/LMWC.2022.3169628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a novel waveguide-to-microstrip vertical transition using a bifurcated probe is presented. The bifurcated probe consists of a pair of thin parallel $E$ -plane probes and bend branches, which forms a strong current crowding effect for electromagnetic energy coupling from rectangular waveguide and broadband impendence matching. Therefore, the bifurcated probe can effectively reduce the sensitivity of probe dimensions to transition performance and design difficulty. To demonstrate this concept, a back-to-back bifurcated probe transition operating at WR-4.3 band (170–260 GHz) was fabricated and measured. Measured results show the double transition covers the entire WR-4.3 band with a minimum return loss (RL) of 16 dB and an average insertion loss (IL) of 0.84 dB, respectively.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1031-1034\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3169628\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3169628","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

在这封信中,提出了一种新的波导到微带的垂直过渡,使用分岔探头。分叉探头由一对细平行的E面探头和弯曲支路组成,对矩形波导的电磁能量耦合和宽带阻抗匹配形成了强电流拥挤效应。因此,分叉探头可以有效降低探头尺寸对过渡性能的敏感性和设计难度。为了证明这一概念,制作并测量了工作在WR-4.3频段(170-260 GHz)的背靠背分叉探针跃迁。测量结果表明,双跃迁覆盖了整个WR-4.3波段,最小回波损耗(RL)为16 dB,平均插入损耗(IL)为0.84 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Millimeter-Wave Broadband Waveguide-to- Microstrip Transition Using a Bifurcated Probe
In this letter, a novel waveguide-to-microstrip vertical transition using a bifurcated probe is presented. The bifurcated probe consists of a pair of thin parallel $E$ -plane probes and bend branches, which forms a strong current crowding effect for electromagnetic energy coupling from rectangular waveguide and broadband impendence matching. Therefore, the bifurcated probe can effectively reduce the sensitivity of probe dimensions to transition performance and design difficulty. To demonstrate this concept, a back-to-back bifurcated probe transition operating at WR-4.3 band (170–260 GHz) was fabricated and measured. Measured results show the double transition covers the entire WR-4.3 band with a minimum return loss (RL) of 16 dB and an average insertion loss (IL) of 0.84 dB, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信