{"title":"层流逆流喷雾火焰的结构与相似特性","authors":"Qun Hu, Lipo Wang","doi":"10.1080/13647830.2023.2212637","DOIUrl":null,"url":null,"abstract":"The spray flame in a laminar counterflow is influenced by various setup conditions, for instance the strain rate and liquid droplet parameters, including the initial temperature, size distribution, hydrodynamics and the vaporisation history. With some reasonable simplification, the two phase governing equations can be reformulated as equations in the single gas phase with reconstructed spray-related source terms. Numerical solutions assume interesting similarity features, such as the (almost) independence of the evaporation path after mapping onto a newly defined quantity R, constructed from sensible enthalpy and mixture fraction. In this regard, the dimensionality of free parameters describing the structure of the spray flame can be hopefully reduced, which then provides a different scenario to understand the spray combustion physics. The flame regime diagram is also elaborated in the present framework.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":"27 1","pages":"768 - 786"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure and similarity properties of the laminar counterflow spray flame\",\"authors\":\"Qun Hu, Lipo Wang\",\"doi\":\"10.1080/13647830.2023.2212637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spray flame in a laminar counterflow is influenced by various setup conditions, for instance the strain rate and liquid droplet parameters, including the initial temperature, size distribution, hydrodynamics and the vaporisation history. With some reasonable simplification, the two phase governing equations can be reformulated as equations in the single gas phase with reconstructed spray-related source terms. Numerical solutions assume interesting similarity features, such as the (almost) independence of the evaporation path after mapping onto a newly defined quantity R, constructed from sensible enthalpy and mixture fraction. In this regard, the dimensionality of free parameters describing the structure of the spray flame can be hopefully reduced, which then provides a different scenario to understand the spray combustion physics. The flame regime diagram is also elaborated in the present framework.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":\"27 1\",\"pages\":\"768 - 786\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2023.2212637\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2023.2212637","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Structure and similarity properties of the laminar counterflow spray flame
The spray flame in a laminar counterflow is influenced by various setup conditions, for instance the strain rate and liquid droplet parameters, including the initial temperature, size distribution, hydrodynamics and the vaporisation history. With some reasonable simplification, the two phase governing equations can be reformulated as equations in the single gas phase with reconstructed spray-related source terms. Numerical solutions assume interesting similarity features, such as the (almost) independence of the evaporation path after mapping onto a newly defined quantity R, constructed from sensible enthalpy and mixture fraction. In this regard, the dimensionality of free parameters describing the structure of the spray flame can be hopefully reduced, which then provides a different scenario to understand the spray combustion physics. The flame regime diagram is also elaborated in the present framework.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.