一种用于大型生物系统极化力场模拟的高效GaMD多级增强采样策略

Frédéric Célerse, Theo Jaffrelot-Inizan, Louis Lagardère, Olivier Adjoua, Pierre Monmarché, Yinglong Mia, E. Derat, Jean‐Philip Piquemal
{"title":"一种用于大型生物系统极化力场模拟的高效GaMD多级增强采样策略","authors":"Frédéric Célerse, Theo Jaffrelot-Inizan, Louis Lagardère, Olivier Adjoua, Pierre Monmarché, Yinglong Mia, E. Derat, Jean‐Philip Piquemal","doi":"10.33774/chemrxiv-2021-ggjfx","DOIUrl":null,"url":null,"abstract":"We introduce a novel multi-level enhanced sampling strategy grounded on Gaussian accelerated Molecular Dynamics (GaMD). First, we propose a GaMD multi-GPUs -accelerated implementation within Tinker-HP. For the specific use with the flexible AMOEBA polarizable force field (PFF), we introduce the new \"dual–water\" GaMD mode. By adding harmonic boosts to the water stretching and bonding terms, it accelerates the solvent-solute interactions while enabling speedups with fast multiple–timestep integrators. To further reduce time-to-solution, we couple GaMD to Umbrella Sampling (US). The GaMD—US/dual–water approach is tested on the 1D Potential of Mean Force (PMF) of the CD2–CD58 system (168000 atoms) allowing the AMOEBA PMF to converge within 1 kcal/mol of the experimental value. Finally, Adaptive Sampling (AS) is added enabling AS–GaMD capabilities but also the introduction of the new Adaptive Sampling–US–GaMD (ASUS–GaMD) scheme. The highly parallel ASUS–GaMD setup decreases time to convergence by respectively 10 and 20 compared to GaMD–US and US.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient GaMD Multi-Level Enhanced Sampling Strategy for Polarizable Force Fields Simulations of Large Biological Systems\",\"authors\":\"Frédéric Célerse, Theo Jaffrelot-Inizan, Louis Lagardère, Olivier Adjoua, Pierre Monmarché, Yinglong Mia, E. Derat, Jean‐Philip Piquemal\",\"doi\":\"10.33774/chemrxiv-2021-ggjfx\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel multi-level enhanced sampling strategy grounded on Gaussian accelerated Molecular Dynamics (GaMD). First, we propose a GaMD multi-GPUs -accelerated implementation within Tinker-HP. For the specific use with the flexible AMOEBA polarizable force field (PFF), we introduce the new \\\"dual–water\\\" GaMD mode. By adding harmonic boosts to the water stretching and bonding terms, it accelerates the solvent-solute interactions while enabling speedups with fast multiple–timestep integrators. To further reduce time-to-solution, we couple GaMD to Umbrella Sampling (US). The GaMD—US/dual–water approach is tested on the 1D Potential of Mean Force (PMF) of the CD2–CD58 system (168000 atoms) allowing the AMOEBA PMF to converge within 1 kcal/mol of the experimental value. Finally, Adaptive Sampling (AS) is added enabling AS–GaMD capabilities but also the introduction of the new Adaptive Sampling–US–GaMD (ASUS–GaMD) scheme. The highly parallel ASUS–GaMD setup decreases time to convergence by respectively 10 and 20 compared to GaMD–US and US.\",\"PeriodicalId\":72565,\"journal\":{\"name\":\"ChemRxiv : the preprint server for chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv : the preprint server for chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/chemrxiv-2021-ggjfx\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-ggjfx","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种新的基于高斯加速分子动力学(GaMD)的多级增强采样策略。首先,我们提出了一个GaMD多GPU加速在廷克惠普实现。对于柔性AMOEBA极化力场(PFF)的特定用途,我们引入了新的“双水”GaMD模式。通过在水拉伸和键合项中添加谐波增强,它加速了溶剂-溶质的相互作用,同时实现了快速多时间步长积分器的加速。为了进一步缩短求解时间,我们将GaMD与Umbrella Sampling(US)相结合。在CD2–CD58系统(168000个原子)的1D平均力势能(PMF)上测试了GaMD-US/双水方法,使AMOEBA PMF收敛在实验值的1 kcal/mol内。最后,增加了自适应采样(AS),实现了AS–GaMD功能,但也引入了新的自适应采样–US–GaMD(ASUS–GaMD)方案。与GaMD–US和US相比,高度并行的ASUS–GaMD设置将收敛时间分别缩短了10和20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient GaMD Multi-Level Enhanced Sampling Strategy for Polarizable Force Fields Simulations of Large Biological Systems
We introduce a novel multi-level enhanced sampling strategy grounded on Gaussian accelerated Molecular Dynamics (GaMD). First, we propose a GaMD multi-GPUs -accelerated implementation within Tinker-HP. For the specific use with the flexible AMOEBA polarizable force field (PFF), we introduce the new "dual–water" GaMD mode. By adding harmonic boosts to the water stretching and bonding terms, it accelerates the solvent-solute interactions while enabling speedups with fast multiple–timestep integrators. To further reduce time-to-solution, we couple GaMD to Umbrella Sampling (US). The GaMD—US/dual–water approach is tested on the 1D Potential of Mean Force (PMF) of the CD2–CD58 system (168000 atoms) allowing the AMOEBA PMF to converge within 1 kcal/mol of the experimental value. Finally, Adaptive Sampling (AS) is added enabling AS–GaMD capabilities but also the introduction of the new Adaptive Sampling–US–GaMD (ASUS–GaMD) scheme. The highly parallel ASUS–GaMD setup decreases time to convergence by respectively 10 and 20 compared to GaMD–US and US.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信