关于Farlie Gumbel-Morgenstern(FGM)家族中记录值伴随物的熵的注记

S. Tahmasebi
{"title":"关于Farlie Gumbel-Morgenstern(FGM)家族中记录值伴随物的熵的注记","authors":"S. Tahmasebi","doi":"10.6339/JDS.2013.11(1).1104","DOIUrl":null,"url":null,"abstract":"Let {(Xi; Yi), i ≥ 1} be a sequence of bivariate random variables from a continuous distribution. If {R(subscript n), n ≥ 1} is the sequence of record values in the sequence of X's, then the Y which corresponds with the nth-record will be called the concomitant of the nth-record, denoted by R(subscript [n]). In FGM family, we determine the amount of information contained in R(subscript [n]) and compare it with amount of information given in R(subscript n). Also, we show that the Kullback-Leibler distance among the concomitants of record values is distribution-free. Finally, we provide some numerical results of mutual information and Pearson correlation coefficient for measuring the amount of dependency between R(subscript n) and R(subscript [n]) in the copula model of FGM family.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on Entropy for Concomitants of Record Values in Farlie-Gumbel-Morgenstern (FGM) Family\",\"authors\":\"S. Tahmasebi\",\"doi\":\"10.6339/JDS.2013.11(1).1104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let {(Xi; Yi), i ≥ 1} be a sequence of bivariate random variables from a continuous distribution. If {R(subscript n), n ≥ 1} is the sequence of record values in the sequence of X's, then the Y which corresponds with the nth-record will be called the concomitant of the nth-record, denoted by R(subscript [n]). In FGM family, we determine the amount of information contained in R(subscript [n]) and compare it with amount of information given in R(subscript n). Also, we show that the Kullback-Leibler distance among the concomitants of record values is distribution-free. Finally, we provide some numerical results of mutual information and Pearson correlation coefficient for measuring the amount of dependency between R(subscript n) and R(subscript [n]) in the copula model of FGM family.\",\"PeriodicalId\":73699,\"journal\":{\"name\":\"Journal of data science : JDS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science : JDS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6339/JDS.2013.11(1).1104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/JDS.2013.11(1).1104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设{(Xi;Yi),i≥1}为连续分布的双变量随机变量序列。如果{R(下标n),n≥1}是X序列中的记录值序列,那么与第n个记录对应的Y将被称为第n个纪录的伴随物,用R(下标[n])表示。在FGM家族中,我们确定R(下标[n])中包含的信息量,并将其与R(下标n)中给出的信息量进行比较。此外,我们还证明了记录值的伴随物之间的Kullback-Leibler距离是无分布的。最后,我们提供了一些互信息和Pearson相关系数的数值结果,用于测量FGM家族copula模型中R(下标n)和R(下标[n])之间的依赖量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on Entropy for Concomitants of Record Values in Farlie-Gumbel-Morgenstern (FGM) Family
Let {(Xi; Yi), i ≥ 1} be a sequence of bivariate random variables from a continuous distribution. If {R(subscript n), n ≥ 1} is the sequence of record values in the sequence of X's, then the Y which corresponds with the nth-record will be called the concomitant of the nth-record, denoted by R(subscript [n]). In FGM family, we determine the amount of information contained in R(subscript [n]) and compare it with amount of information given in R(subscript n). Also, we show that the Kullback-Leibler distance among the concomitants of record values is distribution-free. Finally, we provide some numerical results of mutual information and Pearson correlation coefficient for measuring the amount of dependency between R(subscript n) and R(subscript [n]) in the copula model of FGM family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信