{"title":"水作为对生物系统影响微弱的传感器","authors":"Valentin I Lobyshev","doi":"10.1007/s12551-023-01120-2","DOIUrl":null,"url":null,"abstract":"<p><p>A characteristic feature of weak impacts is the non-monotonic response of living organisms and model biological systems to monotonically decreasing impacts. The qualitative similarity of the effects caused by the different acting factors makes one think about the common cause of the observed effects, which is water. A comprehensive analysis of the actual composition of water indicates that water under normal conditions is a multicomponent open non-equilibrium system. Nanobubbles that are always present in water play a significant role in the properties of dilute aqueous solutions. When collapsed, they can produce active oxygen and nitrogen species that have a strong effect on biological systems. Significant non-monotonic changes in electrical conductivity found in a series of sequentially diluted solutions subjected to vigorous shaking after each dilution convincingly demonstrate the presence of chemical changes in the composition of aqueous solutions explained by mechanochemical processes. Similar changes were observed in water samples prepared in the same manner with vigorous shaking and dilution without the addition of any chemical compounds. The long-term evolution of the conductivity of such solutions depends on the chemical structure of the solutes.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643777/pdf/","citationCount":"0","resultStr":"{\"title\":\"Water as a sensor of weak impacts on biological systems.\",\"authors\":\"Valentin I Lobyshev\",\"doi\":\"10.1007/s12551-023-01120-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A characteristic feature of weak impacts is the non-monotonic response of living organisms and model biological systems to monotonically decreasing impacts. The qualitative similarity of the effects caused by the different acting factors makes one think about the common cause of the observed effects, which is water. A comprehensive analysis of the actual composition of water indicates that water under normal conditions is a multicomponent open non-equilibrium system. Nanobubbles that are always present in water play a significant role in the properties of dilute aqueous solutions. When collapsed, they can produce active oxygen and nitrogen species that have a strong effect on biological systems. Significant non-monotonic changes in electrical conductivity found in a series of sequentially diluted solutions subjected to vigorous shaking after each dilution convincingly demonstrate the presence of chemical changes in the composition of aqueous solutions explained by mechanochemical processes. Similar changes were observed in water samples prepared in the same manner with vigorous shaking and dilution without the addition of any chemical compounds. The long-term evolution of the conductivity of such solutions depends on the chemical structure of the solutes.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-023-01120-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01120-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Water as a sensor of weak impacts on biological systems.
A characteristic feature of weak impacts is the non-monotonic response of living organisms and model biological systems to monotonically decreasing impacts. The qualitative similarity of the effects caused by the different acting factors makes one think about the common cause of the observed effects, which is water. A comprehensive analysis of the actual composition of water indicates that water under normal conditions is a multicomponent open non-equilibrium system. Nanobubbles that are always present in water play a significant role in the properties of dilute aqueous solutions. When collapsed, they can produce active oxygen and nitrogen species that have a strong effect on biological systems. Significant non-monotonic changes in electrical conductivity found in a series of sequentially diluted solutions subjected to vigorous shaking after each dilution convincingly demonstrate the presence of chemical changes in the composition of aqueous solutions explained by mechanochemical processes. Similar changes were observed in water samples prepared in the same manner with vigorous shaking and dilution without the addition of any chemical compounds. The long-term evolution of the conductivity of such solutions depends on the chemical structure of the solutes.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation