I. A, Terashima S, K. S, Sutoh K, K. K, Hosokawa Y, M. M
{"title":"用于计算临床电子束辐照引起的水中剂量的先前高斯笔状束模型的进一步发展","authors":"I. A, Terashima S, K. S, Sutoh K, K. K, Hosokawa Y, M. M","doi":"10.14312/2399-8172.2023-1","DOIUrl":null,"url":null,"abstract":"Purposes: We perform further development for our previous Gaussian-pencil-beam-model used for calculating the electron dose in water under clinical electron-beam irradiation. The main purpose is to evaluate accurately the parallel beam depth-doses at deep depths beyond about the extrapolated range (Rp) under an infinite field. Methods: Sets of parallel beam depth-doses under an infinite field were reconstructed for beams of E=6, 12, and 18 MeV in light of the electron Monte Carlo (eMC) datasets reported by Wieslander and Knöös (2006), separating the datasets into the direct electron beam and direct-plus-indirect electron beam groups. The datasets at the deep depths were then reconstructed using each factor of R_scale^OAD. Results and conclusions: The following results were obtained by comparing the calculated datasets of depth dose (DD) and off-axis dose (OAD) with the eMC datasets: (i) The further revised Gaussian pencil beam model is of practical use without using complicated correction factors; and (ii) The DD and OAD datasets are yielded effectively over wide ranges of depths and off-axis distances.","PeriodicalId":73922,"journal":{"name":"Journal of radiology and imaging","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further development of the preceding Gaussian-pencil-beam-model used for calculation of the in-water dose caused by clinical electron-beam irradiation\",\"authors\":\"I. A, Terashima S, K. S, Sutoh K, K. K, Hosokawa Y, M. M\",\"doi\":\"10.14312/2399-8172.2023-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purposes: We perform further development for our previous Gaussian-pencil-beam-model used for calculating the electron dose in water under clinical electron-beam irradiation. The main purpose is to evaluate accurately the parallel beam depth-doses at deep depths beyond about the extrapolated range (Rp) under an infinite field. Methods: Sets of parallel beam depth-doses under an infinite field were reconstructed for beams of E=6, 12, and 18 MeV in light of the electron Monte Carlo (eMC) datasets reported by Wieslander and Knöös (2006), separating the datasets into the direct electron beam and direct-plus-indirect electron beam groups. The datasets at the deep depths were then reconstructed using each factor of R_scale^OAD. Results and conclusions: The following results were obtained by comparing the calculated datasets of depth dose (DD) and off-axis dose (OAD) with the eMC datasets: (i) The further revised Gaussian pencil beam model is of practical use without using complicated correction factors; and (ii) The DD and OAD datasets are yielded effectively over wide ranges of depths and off-axis distances.\",\"PeriodicalId\":73922,\"journal\":{\"name\":\"Journal of radiology and imaging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of radiology and imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14312/2399-8172.2023-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of radiology and imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14312/2399-8172.2023-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Further development of the preceding Gaussian-pencil-beam-model used for calculation of the in-water dose caused by clinical electron-beam irradiation
Purposes: We perform further development for our previous Gaussian-pencil-beam-model used for calculating the electron dose in water under clinical electron-beam irradiation. The main purpose is to evaluate accurately the parallel beam depth-doses at deep depths beyond about the extrapolated range (Rp) under an infinite field. Methods: Sets of parallel beam depth-doses under an infinite field were reconstructed for beams of E=6, 12, and 18 MeV in light of the electron Monte Carlo (eMC) datasets reported by Wieslander and Knöös (2006), separating the datasets into the direct electron beam and direct-plus-indirect electron beam groups. The datasets at the deep depths were then reconstructed using each factor of R_scale^OAD. Results and conclusions: The following results were obtained by comparing the calculated datasets of depth dose (DD) and off-axis dose (OAD) with the eMC datasets: (i) The further revised Gaussian pencil beam model is of practical use without using complicated correction factors; and (ii) The DD and OAD datasets are yielded effectively over wide ranges of depths and off-axis distances.