分数阶布朗运动驱动的分数阶脉冲中立型泛函微分方程解的存在性

IF 0.3 Q4 STATISTICS & PROBABILITY
A. Lahmoudi, E. Lakhel
{"title":"分数阶布朗运动驱动的分数阶脉冲中立型泛函微分方程解的存在性","authors":"A. Lahmoudi, E. Lakhel","doi":"10.1515/rose-2022-2080","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider a class of fractional impulsive neutral stochastic functional differential equations with infinite delay driven by a fractional Brownian motion in a real separable Hilbert space. We prove the existence of mild solutions by using stochastic analysis and a fixed-point strategy.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"171 - 182"},"PeriodicalIF":0.3000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions for fractional impulsive neutral functional differential equations driven by fractional Brownian motion\",\"authors\":\"A. Lahmoudi, E. Lakhel\",\"doi\":\"10.1515/rose-2022-2080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider a class of fractional impulsive neutral stochastic functional differential equations with infinite delay driven by a fractional Brownian motion in a real separable Hilbert space. We prove the existence of mild solutions by using stochastic analysis and a fixed-point strategy.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"30 1\",\"pages\":\"171 - 182\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2022-2080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了实数可分Hilbert空间中一类由分数阶布朗运动驱动的具有无限延迟的分数阶脉冲中立型随机泛函微分方程。我们利用随机分析和不动点策略证明了温和解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions for fractional impulsive neutral functional differential equations driven by fractional Brownian motion
Abstract In this paper, we consider a class of fractional impulsive neutral stochastic functional differential equations with infinite delay driven by a fractional Brownian motion in a real separable Hilbert space. We prove the existence of mild solutions by using stochastic analysis and a fixed-point strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信