关于非阿基米德绝对值扩张的几何判定

Q4 Mathematics
Mohamed Faris, L. El Fadil
{"title":"关于非阿基米德绝对值扩张的几何判定","authors":"Mohamed Faris, L. El Fadil","doi":"10.2478/tmmp-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract Let | | be a discrete non-archimedean absolute value of a field K with valuation ring 𝒪, maximal ideal 𝓜 and residue field 𝔽 = 𝒪/𝓜. Let L be a simple finite extension of K generated by a root α of a monic irreducible polynomial F ∈ O[x]. Assume that F¯=ϕ¯l$\\overline F = \\overline \\varphi ^l$ in 𝔽[x] for some monic polynomial φ ∈ O[x] whose reduction modulo 𝓜 is irreducible, the φ-Newton polygon Nφ¯(F)$N\\overline \\phi \\left( F \\right)$ has a single side of negative slope λ, and the residual polynomial Rλ(F )(y) has no multiple factors in 𝔽φ[y]. In this paper, we describe all absolute values of L extending | |. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"83 1","pages":"87 - 102"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On The Geometric Determination of Extensions of Non-Archimedean Absolute Values\",\"authors\":\"Mohamed Faris, L. El Fadil\",\"doi\":\"10.2478/tmmp-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let | | be a discrete non-archimedean absolute value of a field K with valuation ring 𝒪, maximal ideal 𝓜 and residue field 𝔽 = 𝒪/𝓜. Let L be a simple finite extension of K generated by a root α of a monic irreducible polynomial F ∈ O[x]. Assume that F¯=ϕ¯l$\\\\overline F = \\\\overline \\\\varphi ^l$ in 𝔽[x] for some monic polynomial φ ∈ O[x] whose reduction modulo 𝓜 is irreducible, the φ-Newton polygon Nφ¯(F)$N\\\\overline \\\\phi \\\\left( F \\\\right)$ has a single side of negative slope λ, and the residual polynomial Rλ(F )(y) has no multiple factors in 𝔽φ[y]. In this paper, we describe all absolute values of L extending | |. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"83 1\",\"pages\":\"87 - 102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要:设| |是域K的离散非阿基米德绝对值,其值环为,极大理想为剩余域为 = / 。设L是由一元不可约多项式F∈O[x]的根α生成的K的简单有限扩展。假设F¯= φ¯1$\overline F = \overline \varphi ^l$ 对于某一元多项式φ∈O[x],其约化模是不可约的,在n [x]中,φ-牛顿多边形Nφ¯(F)$N\overline \phi \left( F \right)$ 单侧斜率为负λ,残差多项式Rλ(F)(y)在𝔽φ[y]中没有多因子。本文描述了扩展| |的L的所有绝对值。这个问题很经典,但我们的方法采用了新思路。给出了一些有用的评论和计算实例,以突出我们的结果所带来的一些改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On The Geometric Determination of Extensions of Non-Archimedean Absolute Values
Abstract Let | | be a discrete non-archimedean absolute value of a field K with valuation ring 𝒪, maximal ideal 𝓜 and residue field 𝔽 = 𝒪/𝓜. Let L be a simple finite extension of K generated by a root α of a monic irreducible polynomial F ∈ O[x]. Assume that F¯=ϕ¯l$\overline F = \overline \varphi ^l$ in 𝔽[x] for some monic polynomial φ ∈ O[x] whose reduction modulo 𝓜 is irreducible, the φ-Newton polygon Nφ¯(F)$N\overline \phi \left( F \right)$ has a single side of negative slope λ, and the residual polynomial Rλ(F )(y) has no multiple factors in 𝔽φ[y]. In this paper, we describe all absolute values of L extending | |. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信