基于多模态数据的野火时空预测

Chen Xu;Yao Xie;Daniel A. Zuniga Vazquez;Rui Yao;Feng Qiu
{"title":"基于多模态数据的野火时空预测","authors":"Chen Xu;Yao Xie;Daniel A. Zuniga Vazquez;Rui Yao;Feng Qiu","doi":"10.1109/JSAIT.2023.3276054","DOIUrl":null,"url":null,"abstract":"Due to severe societal and environmental impacts, wildfire prediction using multi-modal sensing data has become a highly sought-after data-analytical tool by various stakeholders (such as state governments and power utility companies) to achieve a more informed understanding of wildfire activities and plan preventive measures. A desirable algorithm should precisely predict fire risk and magnitude for a location in real time. In this paper, we develop a flexible spatio-temporal wildfire prediction framework using multi-modal time series data. We first predict the wildfire risk (the chance of a wildfire event) in real-time, considering the historical events using discrete mutually exciting point process models. Then we further develop a wildfire magnitude prediction set method based on the flexible distribution-free time-series conformal prediction (CP) approach. Theoretically, we prove a risk model parameter recovery guarantee, as well as coverage and set size guarantees for the CP sets. Through extensive real-data experiments with wildfire data in California, we demonstrate the effectiveness of our methods, as well as their flexibility and scalability in large regions.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"302-313"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-Temporal Wildfire Prediction Using Multi-Modal Data\",\"authors\":\"Chen Xu;Yao Xie;Daniel A. Zuniga Vazquez;Rui Yao;Feng Qiu\",\"doi\":\"10.1109/JSAIT.2023.3276054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to severe societal and environmental impacts, wildfire prediction using multi-modal sensing data has become a highly sought-after data-analytical tool by various stakeholders (such as state governments and power utility companies) to achieve a more informed understanding of wildfire activities and plan preventive measures. A desirable algorithm should precisely predict fire risk and magnitude for a location in real time. In this paper, we develop a flexible spatio-temporal wildfire prediction framework using multi-modal time series data. We first predict the wildfire risk (the chance of a wildfire event) in real-time, considering the historical events using discrete mutually exciting point process models. Then we further develop a wildfire magnitude prediction set method based on the flexible distribution-free time-series conformal prediction (CP) approach. Theoretically, we prove a risk model parameter recovery guarantee, as well as coverage and set size guarantees for the CP sets. Through extensive real-data experiments with wildfire data in California, we demonstrate the effectiveness of our methods, as well as their flexibility and scalability in large regions.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"302-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10130568/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10130568/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于严重的社会和环境影响,使用多模态传感数据进行野火预测已成为各利益相关者(如州政府和电力公司)广受欢迎的数据分析工具,以更深入地了解野火活动并制定预防措施。理想的算法应该实时准确预测一个地点的火灾风险和规模。在本文中,我们使用多模态时间序列数据开发了一个灵活的时空野火预测框架。我们首先使用离散的相互激励的点过程模型,考虑历史事件,实时预测野火风险(野火事件的可能性)。然后,我们进一步发展了一种基于灵活分布自由时间序列保角预测(CP)方法的野火震级预测集方法。理论上,我们证明了一个风险模型参数恢复保证,以及CP集的覆盖范围和集大小保证。通过对加州野火数据进行广泛的真实数据实验,我们展示了我们的方法的有效性,以及它们在大区域的灵活性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Wildfire Prediction Using Multi-Modal Data
Due to severe societal and environmental impacts, wildfire prediction using multi-modal sensing data has become a highly sought-after data-analytical tool by various stakeholders (such as state governments and power utility companies) to achieve a more informed understanding of wildfire activities and plan preventive measures. A desirable algorithm should precisely predict fire risk and magnitude for a location in real time. In this paper, we develop a flexible spatio-temporal wildfire prediction framework using multi-modal time series data. We first predict the wildfire risk (the chance of a wildfire event) in real-time, considering the historical events using discrete mutually exciting point process models. Then we further develop a wildfire magnitude prediction set method based on the flexible distribution-free time-series conformal prediction (CP) approach. Theoretically, we prove a risk model parameter recovery guarantee, as well as coverage and set size guarantees for the CP sets. Through extensive real-data experiments with wildfire data in California, we demonstrate the effectiveness of our methods, as well as their flexibility and scalability in large regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信