{"title":"含铬废弃物的碳化:可持续能源、高性价比、可循环利用","authors":"R. Senthil","doi":"10.1680/jenes.23.00046","DOIUrl":null,"url":null,"abstract":"The leather industry is currently under severe threat from efforts to eliminate environmental pollution issues caused by the generation of leather waste. Landfills must be used to dispose of leather waste, which harms the environment. Use of different chemicals during leather processing produces wastes in solid, liquid and gaseous form: contribute to environmental pollution. The development of leather/paper waste-based materials is an offer promoted by the recycled leather industry. A study is conducted into this work to prepare a polymerized electrolytic solution (PES) from chrome-containing leather waste (CCLW) for carbonized particles (CP), microfibrillated cellulose (MCF), and polyethylene glycol (PEG) for their potential use in sustainable energy production. In this method consuming power (rechargeable) is based on the redox process. Field emission-scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) were used to investigate the physical and chemical features of PES. On PES, energy generation was demonstrated using a multimeter and rheological properties. The results show that energy was produced with a voltage of 1101.12 ± 1.00 mV per cell, a current of 639.12 ± 0.42 mA per cell, and a resistance of 88.77 ± 0.17 per cell. Rheological tests were conducted at 25 °C with 8% wt/vol of PES and gradually increased shear-strain rates of 0.01 to 100 s−1. This work presents the environmental results of a study effort on the comparative examination of solutions for material and energy recovery from waste, along with those derived from mass and energy balances.","PeriodicalId":15665,"journal":{"name":"Journal of Environmental Engineering and Science","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonization of chrome containing waste: Sustainable energy, cost-effective and recycling\",\"authors\":\"R. Senthil\",\"doi\":\"10.1680/jenes.23.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leather industry is currently under severe threat from efforts to eliminate environmental pollution issues caused by the generation of leather waste. Landfills must be used to dispose of leather waste, which harms the environment. Use of different chemicals during leather processing produces wastes in solid, liquid and gaseous form: contribute to environmental pollution. The development of leather/paper waste-based materials is an offer promoted by the recycled leather industry. A study is conducted into this work to prepare a polymerized electrolytic solution (PES) from chrome-containing leather waste (CCLW) for carbonized particles (CP), microfibrillated cellulose (MCF), and polyethylene glycol (PEG) for their potential use in sustainable energy production. In this method consuming power (rechargeable) is based on the redox process. Field emission-scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) were used to investigate the physical and chemical features of PES. On PES, energy generation was demonstrated using a multimeter and rheological properties. The results show that energy was produced with a voltage of 1101.12 ± 1.00 mV per cell, a current of 639.12 ± 0.42 mA per cell, and a resistance of 88.77 ± 0.17 per cell. Rheological tests were conducted at 25 °C with 8% wt/vol of PES and gradually increased shear-strain rates of 0.01 to 100 s−1. This work presents the environmental results of a study effort on the comparative examination of solutions for material and energy recovery from waste, along with those derived from mass and energy balances.\",\"PeriodicalId\":15665,\"journal\":{\"name\":\"Journal of Environmental Engineering and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Engineering and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jenes.23.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jenes.23.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Carbonization of chrome containing waste: Sustainable energy, cost-effective and recycling
The leather industry is currently under severe threat from efforts to eliminate environmental pollution issues caused by the generation of leather waste. Landfills must be used to dispose of leather waste, which harms the environment. Use of different chemicals during leather processing produces wastes in solid, liquid and gaseous form: contribute to environmental pollution. The development of leather/paper waste-based materials is an offer promoted by the recycled leather industry. A study is conducted into this work to prepare a polymerized electrolytic solution (PES) from chrome-containing leather waste (CCLW) for carbonized particles (CP), microfibrillated cellulose (MCF), and polyethylene glycol (PEG) for their potential use in sustainable energy production. In this method consuming power (rechargeable) is based on the redox process. Field emission-scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) were used to investigate the physical and chemical features of PES. On PES, energy generation was demonstrated using a multimeter and rheological properties. The results show that energy was produced with a voltage of 1101.12 ± 1.00 mV per cell, a current of 639.12 ± 0.42 mA per cell, and a resistance of 88.77 ± 0.17 per cell. Rheological tests were conducted at 25 °C with 8% wt/vol of PES and gradually increased shear-strain rates of 0.01 to 100 s−1. This work presents the environmental results of a study effort on the comparative examination of solutions for material and energy recovery from waste, along with those derived from mass and energy balances.
期刊介绍:
Journal of Environmental Engineering and Science is an international, peer-reviewed publication providing a forum for the dissemination of environmental research, encouraging interdisciplinary research collaboration to address environmental problems. It addresses all aspects of environmental engineering and applied environmental science, with the exception of noise, radiation and light.