Sk Injamamul Islam, Moslema Jahan Mou, Saloa Sanjida, Sarower Mahfuj
{"title":"以衣壳蛋白为靶点鉴定亚洲鲈鱼神经坏死病毒(NNV)植物化学抑制剂的计算机方法","authors":"Sk Injamamul Islam, Moslema Jahan Mou, Saloa Sanjida, Sarower Mahfuj","doi":"10.4194/ga487","DOIUrl":null,"url":null,"abstract":"Nervous necrosis virus (NNV) is a devastating infectious pathogen for fish species with 100% mortality. To date, no specific drugs or vaccines have been developed that can prevent infections in aquaculture caused by NNV. It has been found that the NNV utilizes capsid protein to enter into the host cell in Asian sea bass and cause disease. In this study, we evaluated the inhibitory potential of Allium sativum compounds that have been reported to show antiviral activity against various pathogens. The capsid protein was modeled and the binding affinity of all the compounds was calculated with the docking approach and top 2 (PubChem CID: 122130381 and CID 12303662) inhibitory compounds were selected for further ADMET properties and DFT analysis. Both the geometry optimization and redocking of the two inhibitory compounds (PubChem CID: 122130381 and CID 12303662) showed a strong binding affinity of -8.2 and -8.0 kcal/mol, respectively with the capsid protein. The molecular dynamic simulation approach further validated the capsid protein – CID: 122130381 and capsid protein- CID 12303662 complex stability. In conclusion, this study deduces that these Allium sativum phytochemicals might act as significant inhibitors of the NNV in sea bass, which can be further validated experimentally.","PeriodicalId":36569,"journal":{"name":"Genetics of Aquatic Organisms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An In-silico Approach for Identifying Phytochemical Inhibitors Against Nervous Necrosis Virus (NNV) in Asian Sea Bass by Targeting Capsid Protein\",\"authors\":\"Sk Injamamul Islam, Moslema Jahan Mou, Saloa Sanjida, Sarower Mahfuj\",\"doi\":\"10.4194/ga487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nervous necrosis virus (NNV) is a devastating infectious pathogen for fish species with 100% mortality. To date, no specific drugs or vaccines have been developed that can prevent infections in aquaculture caused by NNV. It has been found that the NNV utilizes capsid protein to enter into the host cell in Asian sea bass and cause disease. In this study, we evaluated the inhibitory potential of Allium sativum compounds that have been reported to show antiviral activity against various pathogens. The capsid protein was modeled and the binding affinity of all the compounds was calculated with the docking approach and top 2 (PubChem CID: 122130381 and CID 12303662) inhibitory compounds were selected for further ADMET properties and DFT analysis. Both the geometry optimization and redocking of the two inhibitory compounds (PubChem CID: 122130381 and CID 12303662) showed a strong binding affinity of -8.2 and -8.0 kcal/mol, respectively with the capsid protein. The molecular dynamic simulation approach further validated the capsid protein – CID: 122130381 and capsid protein- CID 12303662 complex stability. In conclusion, this study deduces that these Allium sativum phytochemicals might act as significant inhibitors of the NNV in sea bass, which can be further validated experimentally.\",\"PeriodicalId\":36569,\"journal\":{\"name\":\"Genetics of Aquatic Organisms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics of Aquatic Organisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4194/ga487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics of Aquatic Organisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4194/ga487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
An In-silico Approach for Identifying Phytochemical Inhibitors Against Nervous Necrosis Virus (NNV) in Asian Sea Bass by Targeting Capsid Protein
Nervous necrosis virus (NNV) is a devastating infectious pathogen for fish species with 100% mortality. To date, no specific drugs or vaccines have been developed that can prevent infections in aquaculture caused by NNV. It has been found that the NNV utilizes capsid protein to enter into the host cell in Asian sea bass and cause disease. In this study, we evaluated the inhibitory potential of Allium sativum compounds that have been reported to show antiviral activity against various pathogens. The capsid protein was modeled and the binding affinity of all the compounds was calculated with the docking approach and top 2 (PubChem CID: 122130381 and CID 12303662) inhibitory compounds were selected for further ADMET properties and DFT analysis. Both the geometry optimization and redocking of the two inhibitory compounds (PubChem CID: 122130381 and CID 12303662) showed a strong binding affinity of -8.2 and -8.0 kcal/mol, respectively with the capsid protein. The molecular dynamic simulation approach further validated the capsid protein – CID: 122130381 and capsid protein- CID 12303662 complex stability. In conclusion, this study deduces that these Allium sativum phytochemicals might act as significant inhibitors of the NNV in sea bass, which can be further validated experimentally.