带电液滴的分岔与稳定性

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Guowei Dai, Ben Duan, Fang Liu
{"title":"带电液滴的分岔与稳定性","authors":"Guowei Dai, Ben Duan, Fang Liu","doi":"10.3233/asy-231853","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the Laplace’s equation for the electrical potential of charge drops on exterior domain, and overdetermined boundary conditions are prescribed. We determine the local bifurcation structure with respect to the surface tension coefficient as bifurcation parameter. Furthermore, we establish the stability and the instability near the bifurcation point.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation and stability for charged drops\",\"authors\":\"Guowei Dai, Ben Duan, Fang Liu\",\"doi\":\"10.3233/asy-231853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the Laplace’s equation for the electrical potential of charge drops on exterior domain, and overdetermined boundary conditions are prescribed. We determine the local bifurcation structure with respect to the surface tension coefficient as bifurcation parameter. Furthermore, we establish the stability and the instability near the bifurcation point.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231853\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231853","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了电荷滴外域电势的拉普拉斯方程,并给出了过定边界条件。我们以表面张力系数作为分岔参数,确定了局部分岔结构。进一步地,我们建立了分支点附近的稳定性和不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation and stability for charged drops
In this paper, we investigate the Laplace’s equation for the electrical potential of charge drops on exterior domain, and overdetermined boundary conditions are prescribed. We determine the local bifurcation structure with respect to the surface tension coefficient as bifurcation parameter. Furthermore, we establish the stability and the instability near the bifurcation point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信