淀粉样蛋白二级结构的结构和构象柔韧性研究-量子化学研究

IF 2.4 Q3 Computer Science
M. Ganesan, S. Paranthaman
{"title":"淀粉样蛋白二级结构的结构和构象柔韧性研究-量子化学研究","authors":"M. Ganesan, S. Paranthaman","doi":"10.1142/s0219633620500145","DOIUrl":null,"url":null,"abstract":"Density functional theory (DFT) calculations are performed to study the conformational flexibility of secondary structures in amyloid beta (A[Formula: see text]) polypeptide. In DFT, M06-2X/6-31[Formula: see text]G(d, p) method is used to optimize the secondary structures of 2LFM and 2BEG in gas phase and in solution phase. Our calculations show that the secondary structures are energetically more stable in solution phase than in gas phase. This is due to the presence of strong solvent interaction with the secondary structures considered in this study. Among the backbone [Formula: see text] and [Formula: see text] dihedral angles, [Formula: see text] varies significantly in sheet structure. This is due to the absence of intermolecular hydrogen bond (H-bond) interactions in sheets considered in this study. Our calculations show that the conformational transition of helix/coil to sheet or vice-versa is due to the floppiness of the amino acid residues. This is observed from the Ramachandran map of the studied secondary structures. Further, it is noted that the intramolecular H-bond interactions play a significant role in the conformational transition of secondary structures of A[Formula: see text].","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633620500145","citationCount":"3","resultStr":"{\"title\":\"Studies on the structure and conformational flexibility of secondary structures in amyloid beta — A quantum chemical study\",\"authors\":\"M. Ganesan, S. Paranthaman\",\"doi\":\"10.1142/s0219633620500145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density functional theory (DFT) calculations are performed to study the conformational flexibility of secondary structures in amyloid beta (A[Formula: see text]) polypeptide. In DFT, M06-2X/6-31[Formula: see text]G(d, p) method is used to optimize the secondary structures of 2LFM and 2BEG in gas phase and in solution phase. Our calculations show that the secondary structures are energetically more stable in solution phase than in gas phase. This is due to the presence of strong solvent interaction with the secondary structures considered in this study. Among the backbone [Formula: see text] and [Formula: see text] dihedral angles, [Formula: see text] varies significantly in sheet structure. This is due to the absence of intermolecular hydrogen bond (H-bond) interactions in sheets considered in this study. Our calculations show that the conformational transition of helix/coil to sheet or vice-versa is due to the floppiness of the amino acid residues. This is observed from the Ramachandran map of the studied secondary structures. Further, it is noted that the intramolecular H-bond interactions play a significant role in the conformational transition of secondary structures of A[Formula: see text].\",\"PeriodicalId\":49976,\"journal\":{\"name\":\"Journal of Theoretical & Computational Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0219633620500145\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical & Computational Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219633620500145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633620500145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

进行密度泛函理论(DFT)计算以研究淀粉样蛋白β(A[公式:见正文])多肽中二级结构的构象灵活性。在DFT中,M06-2X/6-31[公式:见正文]G(d,p)方法用于优化2LFM和2BEG在气相和溶液相中的二次结构。我们的计算表明,二次结构在溶液相中比在气相中能量更稳定。这是由于存在与本研究中考虑的二级结构的强溶剂相互作用。在主干[公式:见正文]和[公式:见图正文]二面角中,[公式:参见正文]在片材结构中变化显著。这是由于本研究中考虑的片材中不存在分子间氢键(氢键)相互作用。我们的计算表明,螺旋/螺旋到片状或反之亦然的构象转变是由于氨基酸残基的漂浮性。这是从所研究的次级结构的Ramachandran图中观察到的。此外,值得注意的是,分子内氢键相互作用在a二级结构的构象转变中起着重要作用[式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies on the structure and conformational flexibility of secondary structures in amyloid beta — A quantum chemical study
Density functional theory (DFT) calculations are performed to study the conformational flexibility of secondary structures in amyloid beta (A[Formula: see text]) polypeptide. In DFT, M06-2X/6-31[Formula: see text]G(d, p) method is used to optimize the secondary structures of 2LFM and 2BEG in gas phase and in solution phase. Our calculations show that the secondary structures are energetically more stable in solution phase than in gas phase. This is due to the presence of strong solvent interaction with the secondary structures considered in this study. Among the backbone [Formula: see text] and [Formula: see text] dihedral angles, [Formula: see text] varies significantly in sheet structure. This is due to the absence of intermolecular hydrogen bond (H-bond) interactions in sheets considered in this study. Our calculations show that the conformational transition of helix/coil to sheet or vice-versa is due to the floppiness of the amino acid residues. This is observed from the Ramachandran map of the studied secondary structures. Further, it is noted that the intramolecular H-bond interactions play a significant role in the conformational transition of secondary structures of A[Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry. JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem. Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信