Changmei Du, Hanhua Li, S. Yan, Qiuhua Zhang, Jiale Jia, Xixi Chen
{"title":"复合材料加筋板在低速冲击和冲击后压缩条件下的损伤与失效分析","authors":"Changmei Du, Hanhua Li, S. Yan, Qiuhua Zhang, Jiale Jia, Xixi Chen","doi":"10.1515/secm-2022-0159","DOIUrl":null,"url":null,"abstract":"Abstract The low-velocity impact and compression after the impact of the composite stiffened panels were carried out after damp-heat aging. The experimental results show that reinforcing the ribs can enhance the impact resistance of test pieces after damp-heat aging. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different located positions of the impact and different aging times. Compared with the intact specimen, the ultimate load-bearing capacity was reduced to 16.83, 12.10, and 17.10% with the specimen aging for 0, 45, and 90 days, respectively, while the impact position located at the intersection of longitudinal and transverse bars has the greatest influence on the damp-heat aging of specimens.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"29 1","pages":"378 - 393"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage and failure analysis of composite stiffened panels under low-velocity impact and compression after impact with damp-heat aging\",\"authors\":\"Changmei Du, Hanhua Li, S. Yan, Qiuhua Zhang, Jiale Jia, Xixi Chen\",\"doi\":\"10.1515/secm-2022-0159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The low-velocity impact and compression after the impact of the composite stiffened panels were carried out after damp-heat aging. The experimental results show that reinforcing the ribs can enhance the impact resistance of test pieces after damp-heat aging. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different located positions of the impact and different aging times. Compared with the intact specimen, the ultimate load-bearing capacity was reduced to 16.83, 12.10, and 17.10% with the specimen aging for 0, 45, and 90 days, respectively, while the impact position located at the intersection of longitudinal and transverse bars has the greatest influence on the damp-heat aging of specimens.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":\"29 1\",\"pages\":\"378 - 393\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0159\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0159","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Damage and failure analysis of composite stiffened panels under low-velocity impact and compression after impact with damp-heat aging
Abstract The low-velocity impact and compression after the impact of the composite stiffened panels were carried out after damp-heat aging. The experimental results show that reinforcing the ribs can enhance the impact resistance of test pieces after damp-heat aging. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different located positions of the impact and different aging times. Compared with the intact specimen, the ultimate load-bearing capacity was reduced to 16.83, 12.10, and 17.10% with the specimen aging for 0, 45, and 90 days, respectively, while the impact position located at the intersection of longitudinal and transverse bars has the greatest influence on the damp-heat aging of specimens.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.