复合材料加筋板在低速冲击和冲击后压缩条件下的损伤与失效分析

IF 1.9 4区 材料科学 Q3 Materials Science
Changmei Du, Hanhua Li, S. Yan, Qiuhua Zhang, Jiale Jia, Xixi Chen
{"title":"复合材料加筋板在低速冲击和冲击后压缩条件下的损伤与失效分析","authors":"Changmei Du, Hanhua Li, S. Yan, Qiuhua Zhang, Jiale Jia, Xixi Chen","doi":"10.1515/secm-2022-0159","DOIUrl":null,"url":null,"abstract":"Abstract The low-velocity impact and compression after the impact of the composite stiffened panels were carried out after damp-heat aging. The experimental results show that reinforcing the ribs can enhance the impact resistance of test pieces after damp-heat aging. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different located positions of the impact and different aging times. Compared with the intact specimen, the ultimate load-bearing capacity was reduced to 16.83, 12.10, and 17.10% with the specimen aging for 0, 45, and 90 days, respectively, while the impact position located at the intersection of longitudinal and transverse bars has the greatest influence on the damp-heat aging of specimens.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"29 1","pages":"378 - 393"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage and failure analysis of composite stiffened panels under low-velocity impact and compression after impact with damp-heat aging\",\"authors\":\"Changmei Du, Hanhua Li, S. Yan, Qiuhua Zhang, Jiale Jia, Xixi Chen\",\"doi\":\"10.1515/secm-2022-0159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The low-velocity impact and compression after the impact of the composite stiffened panels were carried out after damp-heat aging. The experimental results show that reinforcing the ribs can enhance the impact resistance of test pieces after damp-heat aging. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different located positions of the impact and different aging times. Compared with the intact specimen, the ultimate load-bearing capacity was reduced to 16.83, 12.10, and 17.10% with the specimen aging for 0, 45, and 90 days, respectively, while the impact position located at the intersection of longitudinal and transverse bars has the greatest influence on the damp-heat aging of specimens.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":\"29 1\",\"pages\":\"378 - 393\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0159\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0159","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

摘要对复合材料加筋板进行了湿热老化后的低速冲击和冲击后的压缩试验。试验结果表明,加强筋可以提高湿热老化后试件的抗冲击性能。冲击后,对试样进行轴向压缩试验。结果表明,不同的冲击位置和不同的时效时间也会影响试件的极限承载力。与完整试样相比,随着试样老化0、45和90,极限承载能力分别降低到16.83、12.10和17.10% 天,而位于纵向和横向钢筋交叉处的冲击位置对试样的湿热老化影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damage and failure analysis of composite stiffened panels under low-velocity impact and compression after impact with damp-heat aging
Abstract The low-velocity impact and compression after the impact of the composite stiffened panels were carried out after damp-heat aging. The experimental results show that reinforcing the ribs can enhance the impact resistance of test pieces after damp-heat aging. After impacting, the specimens were tested in an axial compression. The results show that the ultimate bearing capacity of the specimen is also affected by different located positions of the impact and different aging times. Compared with the intact specimen, the ultimate load-bearing capacity was reduced to 16.83, 12.10, and 17.10% with the specimen aging for 0, 45, and 90 days, respectively, while the impact position located at the intersection of longitudinal and transverse bars has the greatest influence on the damp-heat aging of specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信