{"title":"Bergman核inHölder空间的边界正则性","authors":"Ziming Shi","doi":"10.2140/pjm.2023.324.157","DOIUrl":null,"url":null,"abstract":"Let $D$ be a bounded strictly pseudoconvex domain in $\\mathbb{C}^n$. Assuming $bD \\in C^{k+3+\\alpha}$ where $k$ is a non-negative integer and $0<\\alpha \\leq 1$, we show that 1) the Bergman kernel $B(\\cdot, w_0) \\in C^{k+ \\min\\{\\alpha, \\frac12 \\} } (\\overline D)$, for any $w_0 \\in D$; 2) The Bergman projection on $D$ is a bounded operator from $C^{k+\\beta}(\\overline D)$ to $C^{k + \\min \\{ \\alpha, \\frac{\\beta}{2} \\}}(\\overline D) $ for any $0<\\beta \\leq 1$. Our results both improve and generalize the work of E. Ligocka.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary regularity of Bergman kernel in\\nHölder space\",\"authors\":\"Ziming Shi\",\"doi\":\"10.2140/pjm.2023.324.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ be a bounded strictly pseudoconvex domain in $\\\\mathbb{C}^n$. Assuming $bD \\\\in C^{k+3+\\\\alpha}$ where $k$ is a non-negative integer and $0<\\\\alpha \\\\leq 1$, we show that 1) the Bergman kernel $B(\\\\cdot, w_0) \\\\in C^{k+ \\\\min\\\\{\\\\alpha, \\\\frac12 \\\\} } (\\\\overline D)$, for any $w_0 \\\\in D$; 2) The Bergman projection on $D$ is a bounded operator from $C^{k+\\\\beta}(\\\\overline D)$ to $C^{k + \\\\min \\\\{ \\\\alpha, \\\\frac{\\\\beta}{2} \\\\}}(\\\\overline D) $ for any $0<\\\\beta \\\\leq 1$. Our results both improve and generalize the work of E. Ligocka.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.324.157\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.157","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Boundary regularity of Bergman kernel in
Hölder space
Let $D$ be a bounded strictly pseudoconvex domain in $\mathbb{C}^n$. Assuming $bD \in C^{k+3+\alpha}$ where $k$ is a non-negative integer and $0<\alpha \leq 1$, we show that 1) the Bergman kernel $B(\cdot, w_0) \in C^{k+ \min\{\alpha, \frac12 \} } (\overline D)$, for any $w_0 \in D$; 2) The Bergman projection on $D$ is a bounded operator from $C^{k+\beta}(\overline D)$ to $C^{k + \min \{ \alpha, \frac{\beta}{2} \}}(\overline D) $ for any $0<\beta \leq 1$. Our results both improve and generalize the work of E. Ligocka.
期刊介绍:
Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.