人口均值估计的比率型指数策略中的比率

Pub Date : 2021-11-20 DOI:10.13052/jrss0974-8024.1429
Anurag Gupta, Rajesh Tailor
{"title":"人口均值估计的比率型指数策略中的比率","authors":"Anurag Gupta, Rajesh Tailor","doi":"10.13052/jrss0974-8024.1429","DOIUrl":null,"url":null,"abstract":"This paper is an attempt to develop an estimator for finite population mean. Motivated by Kiregyera (1984), a ratio in ratio type exponential strategy is developed for estimation of population mean in double sampling for stratification. To compare with relevant considered estimators, expressions for bias and mean squared error of the developed estimator have been derived. The developed estimator has been compared with usual unbiased estimator, Ige and Tripathi (1987), ratio estimator and ratio type exponential estimator given by Tailor et al (2014) theoretically as well as empirically.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ratio in Ratio Type Exponential Strategy for the Estimation of Population Mean\",\"authors\":\"Anurag Gupta, Rajesh Tailor\",\"doi\":\"10.13052/jrss0974-8024.1429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is an attempt to develop an estimator for finite population mean. Motivated by Kiregyera (1984), a ratio in ratio type exponential strategy is developed for estimation of population mean in double sampling for stratification. To compare with relevant considered estimators, expressions for bias and mean squared error of the developed estimator have been derived. The developed estimator has been compared with usual unbiased estimator, Ige and Tripathi (1987), ratio estimator and ratio type exponential estimator given by Tailor et al (2014) theoretically as well as empirically.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss0974-8024.1429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.1429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文试图发展一个有限总体均值的估计量。在Kiregyera(1984)的启发下,提出了一种比率型指数策略,用于在分层的双抽样中估计人口平均值。为了和相关的估计量进行比较,导出了所发展的估计量的偏差和均方误差的表达式。将所开发的估计量与通常的无偏估计量Ige和Tripathi(1987)、Tailor等人(2014)给出的比率估计量和比率型指数估计量进行了理论和实证比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ratio in Ratio Type Exponential Strategy for the Estimation of Population Mean
This paper is an attempt to develop an estimator for finite population mean. Motivated by Kiregyera (1984), a ratio in ratio type exponential strategy is developed for estimation of population mean in double sampling for stratification. To compare with relevant considered estimators, expressions for bias and mean squared error of the developed estimator have been derived. The developed estimator has been compared with usual unbiased estimator, Ige and Tripathi (1987), ratio estimator and ratio type exponential estimator given by Tailor et al (2014) theoretically as well as empirically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信