{"title":"Sobolev临界薛定谔-波普-波多尔斯基系统的归一化解","authors":"Yuxin Li, Xiaojun Chang, Zhaosheng Feng","doi":"10.58997/ejde.2023.56","DOIUrl":null,"url":null,"abstract":"We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\\displaylines{ -\\Delta u+\\phi u=\\lambda u+\\mu|u|^{p-2}u+|u|^4u\\quad \\text{in }\\mathbb{R}^3,\\cr -\\Delta\\phi+\\Delta^2\\phi=4\\pi u^2\\quad \\text{in } \\mathbb{R}^3, }$$ under the mass constraint \\(\\int_{\\mathbb{R}^3}u^2\\,dx=c \\) for some prescribed \\(c>0\\), where \\(20\\) is a parameter, and \\(\\lambda\\in\\mathbb{R}\\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.\nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems\",\"authors\":\"Yuxin Li, Xiaojun Chang, Zhaosheng Feng\",\"doi\":\"10.58997/ejde.2023.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\\\\displaylines{ -\\\\Delta u+\\\\phi u=\\\\lambda u+\\\\mu|u|^{p-2}u+|u|^4u\\\\quad \\\\text{in }\\\\mathbb{R}^3,\\\\cr -\\\\Delta\\\\phi+\\\\Delta^2\\\\phi=4\\\\pi u^2\\\\quad \\\\text{in } \\\\mathbb{R}^3, }$$ under the mass constraint \\\\(\\\\int_{\\\\mathbb{R}^3}u^2\\\\,dx=c \\\\) for some prescribed \\\\(c>0\\\\), where \\\\(20\\\\) is a parameter, and \\\\(\\\\lambda\\\\in\\\\mathbb{R}\\\\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.\\nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.56\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.56","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems
We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\displaylines{ -\Delta u+\phi u=\lambda u+\mu|u|^{p-2}u+|u|^4u\quad \text{in }\mathbb{R}^3,\cr -\Delta\phi+\Delta^2\phi=4\pi u^2\quad \text{in } \mathbb{R}^3, }$$ under the mass constraint \(\int_{\mathbb{R}^3}u^2\,dx=c \) for some prescribed \(c>0\), where \(20\) is a parameter, and \(\lambda\in\mathbb{R}\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.
For more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.