Sobolev临界薛定谔-波普-波多尔斯基系统的归一化解

IF 0.8 4区 数学 Q2 MATHEMATICS
Yuxin Li, Xiaojun Chang, Zhaosheng Feng
{"title":"Sobolev临界薛定谔-波普-波多尔斯基系统的归一化解","authors":"Yuxin Li, Xiaojun Chang, Zhaosheng Feng","doi":"10.58997/ejde.2023.56","DOIUrl":null,"url":null,"abstract":"We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\\displaylines{ -\\Delta u+\\phi u=\\lambda u+\\mu|u|^{p-2}u+|u|^4u\\quad \\text{in }\\mathbb{R}^3,\\cr -\\Delta\\phi+\\Delta^2\\phi=4\\pi u^2\\quad \\text{in } \\mathbb{R}^3, }$$ under the mass constraint \\(\\int_{\\mathbb{R}^3}u^2\\,dx=c \\) for some prescribed \\(c>0\\), where \\(20\\) is a parameter, and \\(\\lambda\\in\\mathbb{R}\\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.\nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems\",\"authors\":\"Yuxin Li, Xiaojun Chang, Zhaosheng Feng\",\"doi\":\"10.58997/ejde.2023.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\\\\displaylines{ -\\\\Delta u+\\\\phi u=\\\\lambda u+\\\\mu|u|^{p-2}u+|u|^4u\\\\quad \\\\text{in }\\\\mathbb{R}^3,\\\\cr -\\\\Delta\\\\phi+\\\\Delta^2\\\\phi=4\\\\pi u^2\\\\quad \\\\text{in } \\\\mathbb{R}^3, }$$ under the mass constraint \\\\(\\\\int_{\\\\mathbb{R}^3}u^2\\\\,dx=c \\\\) for some prescribed \\\\(c>0\\\\), where \\\\(20\\\\) is a parameter, and \\\\(\\\\lambda\\\\in\\\\mathbb{R}\\\\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.\\nFor more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.56\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.56","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了Sobolev临界Schrodinger-Bopp-Podolsky系统$$\displaylines|^{p-2}u+|u|^4u\quad\text{in}\mathbb{R}^3,\cr-\Delta\phi+\Delta^2,phi=4\pi u^2\quad\text{in}\mathbb{R}^ 3,}$$在质量约束下\(\int_{\mathbb{R}^3}u^2\,dx=c\),对于一些规定的\(c>0\),其中\(20\)是一个参数,\(\lambda\in\mathbb}R)是拉格朗日乘子。通过发展约束最小化方法,我们证明了上述系统允许一个局部极小值。此外,我们还建立了归一化基态解的存在性。有关详细信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized solutions for Sobolev critical Schrodinger-Bopp-Podolsky systems
We study the Sobolev critical Schrodinger-Bopp-Podolsky system $$\displaylines{ -\Delta u+\phi u=\lambda u+\mu|u|^{p-2}u+|u|^4u\quad \text{in }\mathbb{R}^3,\cr -\Delta\phi+\Delta^2\phi=4\pi u^2\quad \text{in } \mathbb{R}^3, }$$ under the mass constraint \(\int_{\mathbb{R}^3}u^2\,dx=c \) for some prescribed \(c>0\), where \(20\) is a parameter, and \(\lambda\in\mathbb{R}\) is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions. For more inofrmation see https://ejde.math.txstate.edu/Volumes/2023/56/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信