M. Bolla, T. Szabados, Máté Baranyi, Fatma Abdelkhalek
{"title":"块循环矩阵与多元平稳序列的谱","authors":"M. Bolla, T. Szabados, Máté Baranyi, Fatma Abdelkhalek","doi":"10.1515/spma-2020-0121","DOIUrl":null,"url":null,"abstract":"Abstract Given a weakly stationary, multivariate time series with absolutely summable autocovariances, asymptotic relation is proved between the eigenvalues of the block Toeplitz matrix of the first n autocovariances and the union of spectra of the spectral density matrices at the n Fourier frequencies, as n → ∞. For the proof, eigenvalues and eigenvectors of block circulant matrices are used. The proved theorem has important consequences as for the analogies between the time and frequency domain calculations. In particular, the complex principal components are used for low-rank approximation of the process; whereas, the block Cholesky decomposition of the block Toeplitz matrix gives rise to dimension reduction within the innovation subspaces. The results are illustrated on a financial time series.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"36 - 51"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0121","citationCount":"0","resultStr":"{\"title\":\"Block circulant matrices and the spectra of multivariate stationary sequences\",\"authors\":\"M. Bolla, T. Szabados, Máté Baranyi, Fatma Abdelkhalek\",\"doi\":\"10.1515/spma-2020-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a weakly stationary, multivariate time series with absolutely summable autocovariances, asymptotic relation is proved between the eigenvalues of the block Toeplitz matrix of the first n autocovariances and the union of spectra of the spectral density matrices at the n Fourier frequencies, as n → ∞. For the proof, eigenvalues and eigenvectors of block circulant matrices are used. The proved theorem has important consequences as for the analogies between the time and frequency domain calculations. In particular, the complex principal components are used for low-rank approximation of the process; whereas, the block Cholesky decomposition of the block Toeplitz matrix gives rise to dimension reduction within the innovation subspaces. The results are illustrated on a financial time series.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"9 1\",\"pages\":\"36 - 51\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Block circulant matrices and the spectra of multivariate stationary sequences
Abstract Given a weakly stationary, multivariate time series with absolutely summable autocovariances, asymptotic relation is proved between the eigenvalues of the block Toeplitz matrix of the first n autocovariances and the union of spectra of the spectral density matrices at the n Fourier frequencies, as n → ∞. For the proof, eigenvalues and eigenvectors of block circulant matrices are used. The proved theorem has important consequences as for the analogies between the time and frequency domain calculations. In particular, the complex principal components are used for low-rank approximation of the process; whereas, the block Cholesky decomposition of the block Toeplitz matrix gives rise to dimension reduction within the innovation subspaces. The results are illustrated on a financial time series.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.