二阶微分方程的Fw压缩解法

IF 0.9 4区 数学 Q2 MATHEMATICS
S. Karmakar, Hiranmoy Garai, L. Dey, A. Chanda
{"title":"二阶微分方程的Fw压缩解法","authors":"S. Karmakar, Hiranmoy Garai, L. Dey, A. Chanda","doi":"10.24193/fpt-ro.2021.2.46","DOIUrl":null,"url":null,"abstract":". In this article, we introduce the notions of F -contractions and Hardy-Rogers type F - contractions via w -distances in the backdrop of an orthogonal metric space. After this, we prove some fixed point results concerning the said kind of contractions by taking a weaker version of completeness of the underlying space instead of completeness. Further, we employ the results to obtain some existence and uniqueness criteria of the solution(s) to a certain type of second order initial value and boundary value problems. Along with these, we illustrate some numerical examples to interpret our achieved fixed point results.","PeriodicalId":51051,"journal":{"name":"Fixed Point Theory","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solution to second order differential equations via Fw-contractions\",\"authors\":\"S. Karmakar, Hiranmoy Garai, L. Dey, A. Chanda\",\"doi\":\"10.24193/fpt-ro.2021.2.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article, we introduce the notions of F -contractions and Hardy-Rogers type F - contractions via w -distances in the backdrop of an orthogonal metric space. After this, we prove some fixed point results concerning the said kind of contractions by taking a weaker version of completeness of the underlying space instead of completeness. Further, we employ the results to obtain some existence and uniqueness criteria of the solution(s) to a certain type of second order initial value and boundary value problems. Along with these, we illustrate some numerical examples to interpret our achieved fixed point results.\",\"PeriodicalId\":51051,\"journal\":{\"name\":\"Fixed Point Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed Point Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24193/fpt-ro.2021.2.46\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/fpt-ro.2021.2.46","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们在正交度量空间的背景下,通过w距离引入了F-收缩和Hardy-Rogers型F-收缩的概念。在此之后,我们通过采用底层空间的完备性的较弱版本而不是完备性来证明关于上述收缩的一些不动点结果。进一步,我们利用这些结果得到了一类二阶初值和边值问题解的存在唯一性准则。除此之外,我们还举例说明了一些数值例子,以解释我们获得的固定点结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution to second order differential equations via Fw-contractions
. In this article, we introduce the notions of F -contractions and Hardy-Rogers type F - contractions via w -distances in the backdrop of an orthogonal metric space. After this, we prove some fixed point results concerning the said kind of contractions by taking a weaker version of completeness of the underlying space instead of completeness. Further, we employ the results to obtain some existence and uniqueness criteria of the solution(s) to a certain type of second order initial value and boundary value problems. Along with these, we illustrate some numerical examples to interpret our achieved fixed point results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fixed Point Theory
Fixed Point Theory 数学-数学
CiteScore
2.30
自引率
9.10%
发文量
26
审稿时长
6-12 weeks
期刊介绍: Fixed Point Theory publishes relevant research and expository papers devoted to the all topics of fixed point theory and applications in all structured set (algebraic, metric, topological (general and algebraic), geometric (synthetic, analytic, metric, differential, topological), ...) and in category theory. Applications to ordinary differential equations, partial differential equations, functional equations, integral equations, mathematical physics, mathematical chemistry, mathematical biology, mathematical economics, mathematical finances, informatics, ..., are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信