{"title":"泡沫分离技术在毕赤酵母生产β-葡聚糖酶中的应用","authors":"Qin Yuhang, C. Yuqing, Peng Yajuan, Shao Wenyao","doi":"10.2478/pjct-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract β-glucanase is widely used in many fields and has great economic value and development space, but it faces the difficulties of separation and nutrient destruction in the process of industrial production. Foam separation is a simple, mild and efficient adsorption separation technique that enables efficient separation and extraction of β-glucanase. In this study, five single factors (loading volume, pH, separation gas velocity, fermentation loading concentration, surfactant concentration) of foam separation and harvest of β-glucanase produced by Pichia pastoris were studied. The best univariate condition was: 600 mL/min separation gas velocity, loading volume of 200 mL, initial enzyme concentration of 100 g/mL, surfactant concentration of 0.3 mg/mL and pH of 5. Based on the best univariate condition, the optimal separation conditions of β-glucanase were further explored, and the five-factor four-level orthogonal test was designed. From the experimental results, the best separation condition was: 600 mL/min, loading volume of 200 mL, initial enzyme concentration of 100 μg/mL, surfactant concentration of 0.5 mg/mL and pH of 5. Under this separation condition, the enrichment ratio (E) was 0.56 and the recovery rate (R) was 96.01%.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"24 1","pages":"1 - 7"},"PeriodicalIF":0.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of foam separation in production of β-glucanase in Pichia\",\"authors\":\"Qin Yuhang, C. Yuqing, Peng Yajuan, Shao Wenyao\",\"doi\":\"10.2478/pjct-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract β-glucanase is widely used in many fields and has great economic value and development space, but it faces the difficulties of separation and nutrient destruction in the process of industrial production. Foam separation is a simple, mild and efficient adsorption separation technique that enables efficient separation and extraction of β-glucanase. In this study, five single factors (loading volume, pH, separation gas velocity, fermentation loading concentration, surfactant concentration) of foam separation and harvest of β-glucanase produced by Pichia pastoris were studied. The best univariate condition was: 600 mL/min separation gas velocity, loading volume of 200 mL, initial enzyme concentration of 100 g/mL, surfactant concentration of 0.3 mg/mL and pH of 5. Based on the best univariate condition, the optimal separation conditions of β-glucanase were further explored, and the five-factor four-level orthogonal test was designed. From the experimental results, the best separation condition was: 600 mL/min, loading volume of 200 mL, initial enzyme concentration of 100 μg/mL, surfactant concentration of 0.5 mg/mL and pH of 5. Under this separation condition, the enrichment ratio (E) was 0.56 and the recovery rate (R) was 96.01%.\",\"PeriodicalId\":20324,\"journal\":{\"name\":\"Polish Journal of Chemical Technology\",\"volume\":\"24 1\",\"pages\":\"1 - 7\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Chemical Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pjct-2022-0015\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2022-0015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Application of foam separation in production of β-glucanase in Pichia
Abstract β-glucanase is widely used in many fields and has great economic value and development space, but it faces the difficulties of separation and nutrient destruction in the process of industrial production. Foam separation is a simple, mild and efficient adsorption separation technique that enables efficient separation and extraction of β-glucanase. In this study, five single factors (loading volume, pH, separation gas velocity, fermentation loading concentration, surfactant concentration) of foam separation and harvest of β-glucanase produced by Pichia pastoris were studied. The best univariate condition was: 600 mL/min separation gas velocity, loading volume of 200 mL, initial enzyme concentration of 100 g/mL, surfactant concentration of 0.3 mg/mL and pH of 5. Based on the best univariate condition, the optimal separation conditions of β-glucanase were further explored, and the five-factor four-level orthogonal test was designed. From the experimental results, the best separation condition was: 600 mL/min, loading volume of 200 mL, initial enzyme concentration of 100 μg/mL, surfactant concentration of 0.5 mg/mL and pH of 5. Under this separation condition, the enrichment ratio (E) was 0.56 and the recovery rate (R) was 96.01%.
期刊介绍:
Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.