比较不同分类器和特征选择技术在情绪分类中的应用

S. Srinivasan, P. Ramesh
{"title":"比较不同分类器和特征选择技术在情绪分类中的应用","authors":"S. Srinivasan, P. Ramesh","doi":"10.1504/IJSSS.2018.10016544","DOIUrl":null,"url":null,"abstract":"In this study, we have explored the potentiality of six different supervised machine learning approaches and feature selection filters to recognize four basic emotions (anger, happy, sadness and surprise) using three different heterogeneous emotion-annotated dataset which combines sentences from news headlines, fairy tales and blogs. For classification purpose, we have chosen the feature set to include the bag-of-words. Our study reveals the fact that the use of the resampling filter and the feature selection filters together contribute towards boosting the prediction accuracies of the classifiers. However, the boosting capabilities are more profound in the resampling filter in comparison to the use of the different feature selection filters.","PeriodicalId":89681,"journal":{"name":"International journal of society systems science","volume":"10 1","pages":"259"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparing different classifiers and feature selection techniques for emotion classification\",\"authors\":\"S. Srinivasan, P. Ramesh\",\"doi\":\"10.1504/IJSSS.2018.10016544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we have explored the potentiality of six different supervised machine learning approaches and feature selection filters to recognize four basic emotions (anger, happy, sadness and surprise) using three different heterogeneous emotion-annotated dataset which combines sentences from news headlines, fairy tales and blogs. For classification purpose, we have chosen the feature set to include the bag-of-words. Our study reveals the fact that the use of the resampling filter and the feature selection filters together contribute towards boosting the prediction accuracies of the classifiers. However, the boosting capabilities are more profound in the resampling filter in comparison to the use of the different feature selection filters.\",\"PeriodicalId\":89681,\"journal\":{\"name\":\"International journal of society systems science\",\"volume\":\"10 1\",\"pages\":\"259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of society systems science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSSS.2018.10016544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of society systems science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSSS.2018.10016544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们探索了六种不同的监督机器学习方法和特征选择过滤器的潜力,使用三种不同的异构情绪注释数据集来识别四种基本情绪(愤怒、快乐、悲伤和惊讶),这些数据集结合了来自新闻标题、童话故事和博客的句子。出于分类目的,我们选择了包含词袋的特征集。我们的研究揭示了这样一个事实,即使用重采样滤波器和特征选择滤波器共同有助于提高分类器的预测精度。然而,与使用不同的特征选择滤波器相比,重采样滤波器的增强能力更为深刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing different classifiers and feature selection techniques for emotion classification
In this study, we have explored the potentiality of six different supervised machine learning approaches and feature selection filters to recognize four basic emotions (anger, happy, sadness and surprise) using three different heterogeneous emotion-annotated dataset which combines sentences from news headlines, fairy tales and blogs. For classification purpose, we have chosen the feature set to include the bag-of-words. Our study reveals the fact that the use of the resampling filter and the feature selection filters together contribute towards boosting the prediction accuracies of the classifiers. However, the boosting capabilities are more profound in the resampling filter in comparison to the use of the different feature selection filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信