{"title":"基于注意的卷积双向门控循环单元的鼾声检测方法","authors":"Min-soo Kim, Gi Yong Lee, Hyoung‐Gook Kim","doi":"10.7776/ASK.2021.40.2.155","DOIUrl":null,"url":null,"abstract":"This paper proposes an automatic method for detecting snore sound, one of the important symptoms of sleep apnea patients. In the proposed method, sound signals generated during sleep are input to detect a sound generation section, and a spectrogram transformed from the detected sound section is applied to a classifier based on a convolutional bidirectional gated recurrent unit (CBGRU) with attention mechanism. The applied attention mechanism improved the snoring sound detection performance by extending the CBGRU model to learn discriminative feature representation for the snoring detection. The experimental results show that the proposed snoring detection method improves the accuracy by approximately 3.1 % ~ 5.5 % than existing method.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"40 1","pages":"155-160"},"PeriodicalIF":0.2000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Snoring sound detection method using attention-based convolutional bidirectional gated recurrent unit\",\"authors\":\"Min-soo Kim, Gi Yong Lee, Hyoung‐Gook Kim\",\"doi\":\"10.7776/ASK.2021.40.2.155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an automatic method for detecting snore sound, one of the important symptoms of sleep apnea patients. In the proposed method, sound signals generated during sleep are input to detect a sound generation section, and a spectrogram transformed from the detected sound section is applied to a classifier based on a convolutional bidirectional gated recurrent unit (CBGRU) with attention mechanism. The applied attention mechanism improved the snoring sound detection performance by extending the CBGRU model to learn discriminative feature representation for the snoring detection. The experimental results show that the proposed snoring detection method improves the accuracy by approximately 3.1 % ~ 5.5 % than existing method.\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":\"40 1\",\"pages\":\"155-160\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2021.40.2.155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2021.40.2.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Snoring sound detection method using attention-based convolutional bidirectional gated recurrent unit
This paper proposes an automatic method for detecting snore sound, one of the important symptoms of sleep apnea patients. In the proposed method, sound signals generated during sleep are input to detect a sound generation section, and a spectrogram transformed from the detected sound section is applied to a classifier based on a convolutional bidirectional gated recurrent unit (CBGRU) with attention mechanism. The applied attention mechanism improved the snoring sound detection performance by extending the CBGRU model to learn discriminative feature representation for the snoring detection. The experimental results show that the proposed snoring detection method improves the accuracy by approximately 3.1 % ~ 5.5 % than existing method.