{"title":"伪凸域上Bergman投影的Sobolev正则性","authors":"Sayed Saber","doi":"10.1016/j.trmi.2016.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the Sobolev regularity of the Bergman projection <span><math><mi>B</mi></math></span> and the <span><math><mover><mrow><mi>∂</mi></mrow><mo>¯</mo></mover></math></span>-Neumann operator <span><math><mi>N</mi></math></span> on a certain pseudoconvex domain. We show that if <span><math><mi>Ω</mi></math></span> is a domain with Lipschitz boundary, which is relatively compact in an <span><math><mi>n</mi></math></span>-dimensional compact Kähler manifold and satisfies some “<span><math><mo>log</mo><mspace></mspace><mi>δ</mi></math></span>-pseudoconvexity” condition, the operators <span><math><mi>B</mi></math></span>, <span><math><mi>N</mi></math></span> and <span><math><msup><mrow><mover><mrow><mi>∂</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>∗</mo></mrow></msup><mi>N</mi></math></span> are regular in the Sobolev spaces <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></math></span> for forms with values in a holomorphic vector bundle <span><math><mi>E</mi></math></span> and for any <span><math><mi>k</mi><mo><</mo><mi>η</mi><mo>/</mo><mn>2</mn></math></span>, <span><math><mn>0</mn><mo><</mo><mi>η</mi><mo><</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 1","pages":"Pages 90-102"},"PeriodicalIF":0.3000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2016.10.004","citationCount":"1","resultStr":"{\"title\":\"Sobolev regularity of the Bergman projection on certain pseudoconvex domains\",\"authors\":\"Sayed Saber\",\"doi\":\"10.1016/j.trmi.2016.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the Sobolev regularity of the Bergman projection <span><math><mi>B</mi></math></span> and the <span><math><mover><mrow><mi>∂</mi></mrow><mo>¯</mo></mover></math></span>-Neumann operator <span><math><mi>N</mi></math></span> on a certain pseudoconvex domain. We show that if <span><math><mi>Ω</mi></math></span> is a domain with Lipschitz boundary, which is relatively compact in an <span><math><mi>n</mi></math></span>-dimensional compact Kähler manifold and satisfies some “<span><math><mo>log</mo><mspace></mspace><mi>δ</mi></math></span>-pseudoconvexity” condition, the operators <span><math><mi>B</mi></math></span>, <span><math><mi>N</mi></math></span> and <span><math><msup><mrow><mover><mrow><mi>∂</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>∗</mo></mrow></msup><mi>N</mi></math></span> are regular in the Sobolev spaces <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></math></span> for forms with values in a holomorphic vector bundle <span><math><mi>E</mi></math></span> and for any <span><math><mi>k</mi><mo><</mo><mi>η</mi><mo>/</mo><mn>2</mn></math></span>, <span><math><mn>0</mn><mo><</mo><mi>η</mi><mo><</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 1\",\"pages\":\"Pages 90-102\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2016.10.004\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809216300071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216300071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sobolev regularity of the Bergman projection on certain pseudoconvex domains
In this paper we study the Sobolev regularity of the Bergman projection and the -Neumann operator on a certain pseudoconvex domain. We show that if is a domain with Lipschitz boundary, which is relatively compact in an -dimensional compact Kähler manifold and satisfies some “-pseudoconvexity” condition, the operators , and are regular in the Sobolev spaces for forms with values in a holomorphic vector bundle and for any , , , .