基于多项朴素贝叶斯的社交媒体对公共政策的情绪分析

W. B. Zulfikar, A. R. Atmadja, S. F. Pratama
{"title":"基于多项朴素贝叶斯的社交媒体对公共政策的情绪分析","authors":"W. B. Zulfikar, A. R. Atmadja, S. F. Pratama","doi":"10.15294/sji.v10i1.39952","DOIUrl":null,"url":null,"abstract":"Purpose:  The purpose of this study is to analyze text documents from Twitter about public policies in handling COVID-19 that are currently or have been determined. The text documents are classified into positive and negative sentiments by using Multinomial Naive Bayes.Methods:  In this research, CRISP-DM is used as a method for conducting sentiment analysis, starting from the business understanding process, data understanding, data preparation, modeling, and evaluation. Multinomial Naive Bayes has been applied in building classification based on text documents. The results of this study made a model that can be used in classifying texts with maximum accuracy.Result:  The results of this research are focused on the model or pattern generated by the Multinomial Naive Bayes Algorithm. The classification results of social media users' tweets against the new normal policy obtained good results with an accuracy value of 90.25%. After classifying the tweets of social media users regarding the new normal policy, the results show that more than 70% agreed and supported the new normal policy.Novelty:  This study resulted in how classification can be done with Multinomial Naive Bayes and this algorithm can work well in recognizing text sentiments that generate positive or negative opinions regarding public policies handling COVID-19. So, the research provided conclusions about the views of people around the world on new normal public policy.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sentiment Analysis on Social Media Against Public Policy Using Multinomial Naive Bayes\",\"authors\":\"W. B. Zulfikar, A. R. Atmadja, S. F. Pratama\",\"doi\":\"10.15294/sji.v10i1.39952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose:  The purpose of this study is to analyze text documents from Twitter about public policies in handling COVID-19 that are currently or have been determined. The text documents are classified into positive and negative sentiments by using Multinomial Naive Bayes.Methods:  In this research, CRISP-DM is used as a method for conducting sentiment analysis, starting from the business understanding process, data understanding, data preparation, modeling, and evaluation. Multinomial Naive Bayes has been applied in building classification based on text documents. The results of this study made a model that can be used in classifying texts with maximum accuracy.Result:  The results of this research are focused on the model or pattern generated by the Multinomial Naive Bayes Algorithm. The classification results of social media users' tweets against the new normal policy obtained good results with an accuracy value of 90.25%. After classifying the tweets of social media users regarding the new normal policy, the results show that more than 70% agreed and supported the new normal policy.Novelty:  This study resulted in how classification can be done with Multinomial Naive Bayes and this algorithm can work well in recognizing text sentiments that generate positive or negative opinions regarding public policies handling COVID-19. So, the research provided conclusions about the views of people around the world on new normal public policy.\",\"PeriodicalId\":30781,\"journal\":{\"name\":\"Scientific Journal of Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/sji.v10i1.39952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v10i1.39952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目的:本研究的目的是分析推特上关于处理新冠肺炎的公共政策的文本文件,这些文件目前或已经确定。方法:本研究采用CRISP-DM方法,从业务理解过程、数据理解、数据准备、建模和评估等方面进行情绪分析。多项式朴素贝叶斯已被应用于基于文本文档的建筑分类。这项研究的结果建立了一个模型,可以用来对文本进行最大准确度的分类。结果:本研究的结果集中在多项式Naive Bayes算法生成的模型或模式上。社交媒体用户针对新常态政策的推文分类结果获得了良好的结果,准确率为90.25%。对社交媒体用户的推文进行分类后,结果显示,超过70%的用户同意并支持新常态政策。新颖性:这项研究揭示了如何使用多项式朴素贝叶斯进行分类,并且该算法可以很好地识别文本情感,这些情感会对处理新冠肺炎的公共政策产生积极或消极的意见。因此,该研究提供了关于世界各地人们对新常态公共政策的看法的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis on Social Media Against Public Policy Using Multinomial Naive Bayes
Purpose:  The purpose of this study is to analyze text documents from Twitter about public policies in handling COVID-19 that are currently or have been determined. The text documents are classified into positive and negative sentiments by using Multinomial Naive Bayes.Methods:  In this research, CRISP-DM is used as a method for conducting sentiment analysis, starting from the business understanding process, data understanding, data preparation, modeling, and evaluation. Multinomial Naive Bayes has been applied in building classification based on text documents. The results of this study made a model that can be used in classifying texts with maximum accuracy.Result:  The results of this research are focused on the model or pattern generated by the Multinomial Naive Bayes Algorithm. The classification results of social media users' tweets against the new normal policy obtained good results with an accuracy value of 90.25%. After classifying the tweets of social media users regarding the new normal policy, the results show that more than 70% agreed and supported the new normal policy.Novelty:  This study resulted in how classification can be done with Multinomial Naive Bayes and this algorithm can work well in recognizing text sentiments that generate positive or negative opinions regarding public policies handling COVID-19. So, the research provided conclusions about the views of people around the world on new normal public policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信